Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radio limitations

Four volumetric defects are also included a spherical cavity, a sphere of a different material, a spheroidal cavity and a cylinderical cavity (a side-drilled hole). Except for the spheroid, the scattering problems are solved exactly by separation-of-variables. The spheroid (a cigar- or oblate-shaped defect) is solved by the null field approach and this limits the radio between the two axes to be smaller than five. [Pg.158]

It is reported that mild carbon steels may be effectively protected by as little as 55 ppm of KTc04 in aerated distilled water at temperatures up to 250oC. This corrosion protection is limited to closed systems, since technetium is radioative and must be confined. 9sTc has a specific activity of 6.2 X lOs Bq/g. Activity of this level must not be allowed to spread. 99Tc is a contamination hazard and should be handled in a glove box. [Pg.107]

Colorimetry, in which a sample absorbs visible light, is one example of a spectroscopic method of analysis. At the end of the nineteenth century, spectroscopy was limited to the absorption, emission, and scattering of visible, ultraviolet, and infrared electromagnetic radiation. During the twentieth century, spectroscopy has been extended to include other forms of electromagnetic radiation (photon spectroscopy), such as X-rays, microwaves, and radio waves, as well as energetic particles (particle spectroscopy), such as electrons and ions. ... [Pg.368]

Precisely controllable rf pulse generation is another essential component of the spectrometer. A short, high power radio frequency pulse, referred to as the B field, is used to simultaneously excite all nuclei at the T,arm or frequencies. The B field should ideally be uniform throughout the sample region and be on the order of 10 ]ls or less for the 90° pulse. The width, in Hertz, of the irradiated spectral window is equal to the reciprocal of the 360° pulse duration. This can be used to determine the limitations of the sweep width (SW) irradiated. For example, with a 90° hard pulse of 5 ]ls, one can observe a 50-kHz window a soft pulse of 50 ms irradiates a 5-Hz window. The primary requirements for rf transmitters are high power, fast switching, sharp pulses, variable power output, and accurate control of the phase. [Pg.401]

The length of the zone and the diameter of the tod are chosen in such a way that surface tension and interactions between circulating electric currents in the molten zone and the radio-frequency (r-f) field from the surrounding induction coil keep the molten zone in place. As of this writing (ca 1996), the maximum sihcon rod diameter that can be purified in this manner is ca 125 mm. Initially, additional purification can be obtained by making mote sweeps of the zone. Eventually, however, more sweeps do not remove any additional impurities. The limiting profile is given by equation 4 ... [Pg.526]

Table 6 Summary of the C detection limits of various radio TLC methods [77]... Table 6 Summary of the C detection limits of various radio TLC methods [77]...
A factor which previously limited installation of automatic corrosion monitoring systems was the cost of cabling between sensors and control room instrumentation-this was particularly relevant to the electrical resistance (ER) systems. Developments to overcome this have included transmitter units at the probe location providing the standard 4-20 mA output (allowing use of standard cable) for onward transmission to data systems or the use of radio linkage which has been successfully used for other process-plant instrumentation. [Pg.1129]

In these equations A and np are the molar fractions of A and P (8 v) = v - vp is the difference between the resonance frequencies of the nuclei in positions A and P, usually determined from the low-temperature limit A is the full-width at half height in the absence of exchange (r - °°) and v is the variable radio frequency of the NMR experiment. [Pg.262]

The U S. photovoltaics industry serves more than 100 different countries. Major competition comes from Japan and, to a limited extent, from Europe. U.S. firms have a dominant position in the power module market (devices with photovoltaic areas greater than 0.5 m ) while Japanese firms have dominated the consumer market for small-photovoltaic goods (e.g., calculators, watches, and radios). [Pg.65]

The frequency range of short radio waves overlaps with that of long wave microwaves — from about 1 m to about 100 pm. Microwaves are of high technical importance. They cover the radar frequencies and the frequencies at which cellular (mobile) telephones work. Their impacts on food colorants, foods, and biological materials are similar to those of radio waves but the warming effect is more distinct. If microwave use is limited to the topics discussed in this book, no precautions are necessary. [Pg.9]

For the general public, the mechanisms, where they exist at all, are limited to provision of information. As described above, regulatory information is made available regularly via government gazette, reports, website or radio. In addition, clear SOPs are cited as a means of achieving transparency. [Pg.56]

Almost all these mechanisms for accountability are limited to organizational instmments, namely publicity (through websites, reports, gazettes, radio) citizen participation (inclusion of interest groups on the committees) and internal discipline (transparent SOPs). Four countries apply a judicial control approach an appeals system operates in Cyprus, Malaysia, the Netherlands and Zimbabwe. [Pg.56]

A major limitation of CW double resonance methods is the sensitivity of the intensities of the transitions to the relative rates of spin relaxation processes. For that reason the peak intensities often convey little quantitative information about the numbers of spins involved and, in extreme cases, may be undetectable. This limitation can be especially severe for liquid samples where several relaxation pathways may have about the same rates. The situation is somewhat better in solids, especially at low temperatures, where some pathways are effectively frozen out. Fortunately, fewer limitations occur when pulsed radio and microwave fields are employed. In that case one can better adapt the excitation and detection timing to the rates of relaxation that are intrinsic to the sample.50 There are now several versions of pulsed ENDOR and other double resonance methods. Some of these methods also make it possible to separate in the time domain overlapping transitions that have different relaxation behavior, thereby improving the resolution of the spectrum. [Pg.162]

When a 350 ml seawater sample was spiked with 54Mn and taken through the chelation, extraction, and back-extraction procedures, the observed recovery of the radio-tracer was 100.6%. Estimates of detection limits for manganese based on sets of both shipboard and shore laboratory separations are of the order of 0.1 nmol/1. The accuracy of the technique is demonstrated by data from the ICES fifth-round intercalibration exercise for trace metals in seawater [449 ]. [Pg.196]

Helium is the second most abundant element in the visible Universe and accordingly there is a mass of data from optical and radio emission lines in nebulae, optical emission lines from the solar chromosphere and prominences and absorption lines in spectra of hot stars. Further estimates are derived more indirectly by applying theories of stellar structure, evolution and pulsation. However, because of the relative insensitivity of Tp to cosmological parameters, combined with the need to allow for additional helium from stellar nucleosynthesis in most objects, the requirements for accuracy are very severe better than 5 per cent to place cosmological limits on Nv and better still to place interesting constraints on t] or One can, however, assert with confidence that there is a universal floor to the helium abundance in observed objects corresponding to 0.23 < Fp < 0.25. [Pg.136]


See other pages where Radio limitations is mentioned: [Pg.63]    [Pg.63]    [Pg.195]    [Pg.249]    [Pg.155]    [Pg.399]    [Pg.549]    [Pg.347]    [Pg.135]    [Pg.315]    [Pg.316]    [Pg.321]    [Pg.109]    [Pg.235]    [Pg.66]    [Pg.674]    [Pg.463]    [Pg.37]    [Pg.1141]    [Pg.1313]    [Pg.646]    [Pg.204]    [Pg.367]    [Pg.189]    [Pg.86]    [Pg.243]    [Pg.974]    [Pg.300]    [Pg.102]    [Pg.165]    [Pg.9]    [Pg.369]    [Pg.398]    [Pg.333]    [Pg.945]    [Pg.255]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Radio, radios

© 2024 chempedia.info