Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double resonance ESR methods

Gunnar Jeschke, MPI for Polymer Research, Mainz, Germany, Continuous-Wave and Pulsed ESR Methods (Chapter 1), Double Resonance ESR Methods (Chapter 2), Site-Specific Information on Macromolecular Materials by Combining CW and Pulsed ESR on Spin Probes (Chapter 7). [Pg.365]

An exception to this rule arises in the ESR spectra of radicals with small hyperfine parameters in solids. In that case the interplay between the Zeeman and anisotropic hyperfine interaction may give rise to satellite peaks for some radical orientations (S. M. Blinder, J. Chem. Phys., 1960, 33, 748 H. Sternlicht,./. Chem. Phys., 1960, 33, 1128). Such effects have been observed in organic free radicals (H. M. McConnell, C. Heller, T. Cole and R. W. Fessenden, J. Am. Chem. Soc., 1959, 82, 766) but are assumed to be negligible for the analysis of powder spectra (see Chapter 4) where A is often large or the resolution is insufficient to reveal subtle spectral features. The nuclear Zeeman interaction does, however, play a central role in electron-nuclear double resonance experiments and related methods [Appendix 2 and Section 2.6 (Chapter 2)]. [Pg.6]

This chapter concludes with a brief description of one advanced technique, Electron Nuclear Double Resonance (ENDOR), the capabilities for which, unlike pulsed methods, may be added as a relatively minor modification to commercial CW ESR spectrometers. [Pg.41]

The combination of higher fields and pulsed, double resonance methods is now making it possible to use ESR as a tool to determine distances within macromolecules. This is a valuable supplement to the very widespread use of multi-dimensional NMR in structural biology.33... [Pg.163]

Electron spin resonance (ESR) measures the absorption spectra associated with the energy states produced from the ground state by interaction with the magnetic field. This review deals with the theory of these states, their description by a spin Hamiltonian and the transitions between these states induced by electromagnetic radiation. The dynamics of these transitions (spin-lattice relaxation times, etc.) are not considered. Also omitted are discussions of other methods of measuring spin Hamiltonian parameters such as nuclear magnetic resonance (NMR) and electron nuclear double resonance (ENDOR), although results obtained by these methods are included in Sec. VI. [Pg.90]

This method unambiguously establishes the presence of species bearing unpaired electrons (ion radicals and radicals). The ESR spectrum quantitatively characterizes the distribution of the electron density within the paramagnetic particle by hyperfine ESR structure. This establishes the nature and electronic configuration of the particle. The ESR method dominates in ion radical studies. Its modem modifications, namely, electron-nuclear double resonance (ENDOR) and electron-nuclear-nuclear triple resonance (TRIPLE), and special... [Pg.229]

A prototypical example of a molecular probe used extensively to study the mineral adsorbent-solution interface is the ESR spin-probe, Cu2+ (Sposito, 1993), whose spectroscopic properties are sensitive to changes in coordination environment. Since water does not interfere significantly with Cu11 ESR spectra, they may be recorded in situ for colloidal suspensions. Detailed, molecular-level information about coordination and orientation of both inner- and outer-sphere Cu2+ surface complexes has resulted from ESR studies of both phyllosilicates and metal oxyhydroxides. In addition, ESR techniques have been combined with closely related spectroscopic methods, like electron-spin-echo envelope modulation (ESEEM) and electron-nuclear double resonance (ENDOR), to provide complementary information about transition metal ion behaviour at mineral surfaces (Sposito, 1993). The level of sophistication and sensitivity of these kinds of surface speciation studies is increasing continually, such that the heterogeneous colloidal particles in soils can be investigated ever more accurately. [Pg.248]

Electron spin resonance (ESR) is a well-established experimental method that has conventionally been limited to 35 GHz and lower in frequency. During the course of the last decade, workers in a number of laboratories (Grinberg et ai, 1983 Haindl et al., 1985 Lynch, et al., 1988 Barra et al., 1990 Wang et al., 1994) developed instruments that have pushed the maximum observation frequency up to nearly 1 THz (1000 GHz). Pulse methods at frequencies up to 604 GHz also have been developed (Weber et al., 1989 Bresgunov et al., 1991 Prisner et al., 1992 Moll, 1994), as well as Electron Nuclear Double Resonance (ENDOR) (Burghaus et al., 1988). [Pg.254]

Pinerii and coworkers, and a few other groups, have used ESR and Mossbauer spectroscopy as well as SANS, extended x-ray absorption fine structure (EX.AFS), and magnetization and susceptibility data to analyze local. struct.ure in perfluorinated ionomer membranes and the distribution of water within them isee, for inst,ance, (61-65) 1. The application of the KNDOR (electron nuclear double resonance) technique to deuteriated methanol-swollen Scunples of these membranes has been reportesd i-ecentiy (66). Photophysical methods have also tef n applied in hydration. si.udies of these membranes (67-69). Finally, some NMR results on the same hydrated perfluorinat,ed ionomer.s well as on hydrated... [Pg.493]

For a given value of B, the energies of Am/ = 1 transitions between the nuclear sublevels of a given electronic spin state are much lower than those between the electronic spin components. Information on the amplitude of the wave function of the electron whose spin is responsible for the ESR spectrum at different lattice sites in the vicinity of the centre was obtained by Feher [17] by monitoring the ESR spectrum as a function of the frequencies in the nuclear frequency range, and this technique was called electron nuclear double resonance (ENDOR). Improvements in the sensitivity of ESR can be obtained using optical or electrical detection methods [47]. [Pg.17]

Electron spin resonance (ESR) spectroscopy is a very powerful and sensitive method for the characterization of the electronic structures of materials with unpaired electrons. There is a variety of ESR techniques, each with its own advantages. In continuous wave ESR (CW-ESR), the sample is subjected to a continuous beam of microwave irradiation of fixed frequency and the magnetic field is swept. Different microwave frequencies may be used and they are denoted as S-band (3.5 GHz),X-band (9.25 GHz), K-band (20 GHz), Q-band (35 GHz) and W-band (95 GHz). Other techniques, such as electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, record in essence the NMR spectra of paramagnetic species. [Pg.296]

ENDOR, Electron Nuclear Double Resonance, is a combination of electron- and nuclear magnetic resonance developed in 1956. The method was apparently originally intended for applications in physics to achieve nuclear polarisation [6], e.g. to obtain more nuclei with wj/ = -Vi than with nij = +Vi. But its main application became to resolve hyperfine structure that is unresolved in regular ESR in liquid and solid samples. Two lines appear in the ENDOR spectmm of a radical (5 = Vi), containing a single nucleus, one corresponding to the ms = +Vi the other to the ms = -Vi electronic level. [Pg.20]


See other pages where Double resonance ESR methods is mentioned: [Pg.25]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.32]    [Pg.34]    [Pg.36]    [Pg.38]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.25]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.32]    [Pg.34]    [Pg.36]    [Pg.38]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.28]    [Pg.554]    [Pg.232]    [Pg.131]    [Pg.16]    [Pg.19]    [Pg.433]    [Pg.211]    [Pg.28]    [Pg.331]    [Pg.55]    [Pg.1639]    [Pg.1652]    [Pg.410]    [Pg.416]    [Pg.3]    [Pg.450]    [Pg.562]   


SEARCH



Double resonance

Double-resonance methods

Resonance methods

© 2024 chempedia.info