Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radicals, unsaturated, reactions with

For example, the molecular weight of unsaturated polyesters is controlled to less than 5000 g/mol. The low molecular weight of the unsaturated polyester allows solvation in vinyl monomers such as styrene to produce a low-viscosity resin. Unsaturated polyesters are made with monomers containing carbon-carbon double bonds able to undergo free-radical crosslinking reactions with styrene and other vinyl monomers. Crosslinking the resin by free-radical polymerization produces the mechanical properties needed in various applications. [Pg.4]

Clearly, whether or not ozone is formed depends also on the rate at which, for example, unsaturated hydrocarbons react with it. Rates of reactions of ozone with alkanes are, as noted above, much slower than for reaction with OH radicals, and reactions with ozone are of the greatest significance with unsaturated aliphatic compounds. The pathways plausibly follow those involved in chemical ozonization (Hudlicky 1990). [Pg.16]

In addition to OH radicals, unsaturated bonds are reactive towards O3 and NO3 radicals and reaction with these species is an important atmospheric degradation mechanism for unsaturated compounds. Table 4 lists rate constants for the reactions of 03 and NO3 radicals with selected alkenes and acetylene. To place such rate constants into perspective we need to consider the typical ambient atmospheric concentrations of O3 and NO3 radicals. Typical ozone concentrations in pristine environments are 20-40 ppb while concentrations in the range 100-200 ppb are experienced in polluted air. The ambient concentration of NO3 is limited by the availability of NO sources. In remote marine environments the NO levels are extremely low (a few ppt) and NO3 radicals do not play an important role in atmospheric chemistry. In continental and urban areas the NO levels are much higher (up to several hundred ppb in polluted urban areas) and NO3 radicals can build up to 5-100 ppt at night (N03 radicals are photolyzed rapidly and are not present in appreciable amounts during the day). For the purposes of the present discussion we have calculated the atmospheric lifetimes of selected unsaturated compounds in Table 4 in the presence of 100 ppb (2.5 x 1012 cm 3) of O3 and 10 ppt (2.5 x 108 cnr3) of NO3. Lifetimes in other environments can be evaluated by appropriate scaling of the data in Table 4. As seen from Table 4, the more reactive unsaturated compounds have lifetimes with respect to reaction with O3 and NO3 radicals of only a few minutes ... [Pg.137]

If an unsaturated monomer is present, the radical adds to it, initiating a chain reaction by producing a new free radical. If we let R stand for the initiator radical, the reaction with styrene can be represented as... [Pg.411]

Autoxidation is the process of oxidation at room temperature. Autoxidation of fatty acids occurs in a series of steps including the formation of free radicals. The process is very complicated and can be roughly divided into three phases initiation, propagation and termination. In the initiation phase, hydrogen is abstracted from the a-methylenic carbon of fatty acids to yield a free radical (equation (11.1)). The presence of a free radical initiator or catalyst is needed for the reaction to take place. Once a free radical is formed, it may form peroxy radicals through reaction with atmospheric oxygen (equation (11.2)). Also, these free radicals can abstract hydrogen from another unsaturated molecule to form a hydroperoxide and a new free radical (equation (11.3)). [Pg.330]

Klein, E. and N. Weber. 2001. In vitro test for the effectiveness of antioxidants as inhibitors of thiyl radical-induced reactions with unsaturated fatty acids. /. Agric. Food Chem. 49 1224-1227. [Pg.256]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

The kinetics of formation and hydrolysis of /-C H OCl have been investigated (262). The chemistry of alkyl hypochlorites, /-C H OCl in particular, has been extensively explored (247). /-Butyl hypochlorite reacts with a variety of olefins via a photoinduced radical chain process to give good yields of aUyflc chlorides (263). Steroid alcohols can be oxidized and chlorinated with /-C H OCl to give good yields of ketosteroids and chlorosteroids (264) (see Steroids). /-Butyl hypochlorite is a more satisfactory reagent than HOCl for /V-chlorination of amines (265). Sulfides are oxidized in excellent yields to sulfoxides without concomitant formation of sulfones (266). 2-Amino-1, 4-quinones are rapidly chlorinated at room temperature chlorination occurs specifically at the position adjacent to the amino group (267). Anhydropenicillin is converted almost quantitatively to its 6-methoxy derivative by /-C H OCl in methanol (268). Reaction of unsaturated hydroperoxides with /-C H OCl provides monocyclic and bicycHc chloroalkyl 1,2-dioxolanes. [Pg.475]

In spirooxaziridines like (114), /3-scission proceeds with ring opening. Stoichiometric amounts of iron(II) salt in acidic solution lead to the dicarboxylic acid derivative (115). The radical undergoes some interesting reactions with added unsaturated compounds. For example, pyridine yields a mixture of 2- and 4-alkylation products in 80% yield. Catalytic amounts of iron(II) ion are sufficient here since the adduct of the radical with pyridine is oxidized by iron(III) ion to the final product (116), thus regenerating iron(II) ion (68TL5609). [Pg.211]

Bromination with A-bromosuccinimide generally gives the same result as bromination with free bromine or hypobromous acid. The reaction is considered to proceed with a small concentration of free bromine and does not generate an appreciable concentration of acid. Conditions are therefore mild. In addition, A-bromosuccinimide has been used to brominate the allylic position of a, -unsaturated ketones in the presence of free-radical promoters or with irradiation, and thus gives access to dienones by dehydro-halogenation, for exaraple " ... [Pg.280]

Cyanoisopropyl radicals generally show a high degree of specificity in reactions with unsaturated substrates. They react with most monomers (c.g. S, MMA) exclusively by tail addition (Scheme 3.4). However, Bcvington et al.11 indicated that cyanoisopropyl radicals give ca 10% head addition with VAc at 60 °C and that the proportion of head addition increases with increasing temperature. [Pg.116]

Hydroxy radical and sulfate radical anion, though they may sometimes give rise to similar products, show quite different selectivity in their reactions with unsaturated substrates. In particular, the sulfate radical anion has a somewhat lower propensity for hydrogen abstraction than the hydroxyl radical. For example, the sulfate radical anion shows little tendency to abstract hydrogen from mcthacrylic acid.232... [Pg.130]

Reaction of Unsaturated Compounds with Dialkyl Phosphites The diesters of phosphorous acid are somewhat resistant to oxidation and used as intermediates for the reaction with olefins forming phosphonic acids. The reaction takes place in the presence of free radical initiators, such as di-/-bu-tyl peroxide [104,105]. [Pg.575]

Few CIDNP studies on free radical reactions with olefins and related unsaturated molecules have been reported, and relatively little chemically useful information seems to have been derived, despite the potential relevance in polymerizing systems. Thus CIDNP has been reported in the decomposition of benzoyl peroxide in the presence of styrene and... [Pg.93]

NMHC. A large number of hydrocarbons are present in petroleum deposits, and their release during refining or use of fuels and solvents, or during the combustion of fuels, results in the presence of more than a hundred different hydrocarbons in polluted air (43,44). These unnatural hydrocarbons join the natural terpenes such as isoprene and the pinenes in their reactions with tropospheric hydroxyl radical. In saturated hydrocarbons (containing all single carbon-carbon bonds) abstraction of a hydrogen (e,g, R4) is the sole tropospheric reaction, but in unsaturated hydrocarbons HO-addition to a carbon-carbon double bond is usually the dominant reaction pathway. [Pg.69]

Certain commercially important crosslinking reactions are carried out with unsaturated polymers. For example, as will be described later in this chapter, polyesters can be made using bifunctional acids which contain a double bond. The resulting polymers have such double bonds at regular intervals along the backbone. These sites of unsaturation are then crosslinked by reaction with styrene monomer in a free-radical chain (addition) process to give a material consisting of polymer backbones and poly(styrene) copolymer crosslinks. [Pg.55]

Polycarboxylated polyalkoxylates and their sulfate derivatives may be prepared by reacting an ethoxylated or propoxylated alcohol with a water-soluble, alkali or earth alkali metal salt of an unsaturated carboxylic acid [339]. The reaction occurs in aqueous solution in the presence of a free radical initiator and gives products of enhanced yield and reduced impurity levels, compared with the essentially anhydrous reactions with free carboxylic acids, which have been used otherwise. The method provides products that give solutions that are clear on neutralization, remain clear and homogeneous on dilution, and are useful as cleaning agents in drilling and other oil field operations. [Pg.314]


See other pages where Radicals, unsaturated, reactions with is mentioned: [Pg.29]    [Pg.152]    [Pg.375]    [Pg.547]    [Pg.257]    [Pg.774]    [Pg.42]    [Pg.425]    [Pg.820]    [Pg.641]    [Pg.61]    [Pg.86]    [Pg.167]    [Pg.376]    [Pg.535]    [Pg.636]    [Pg.169]    [Pg.111]    [Pg.115]    [Pg.122]    [Pg.193]    [Pg.998]    [Pg.123]    [Pg.138]    [Pg.864]    [Pg.34]    [Pg.51]    [Pg.24]    [Pg.42]   


SEARCH



Reaction with radicals

Reaction with unsaturated

Reactions unsaturated

© 2024 chempedia.info