Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical reactions chlorination

You may be surprised to know that the chloroacid 65 can be made from available pivalic acid 63 by photochemical chlorination. This is again a radical reaction, chlorine radicals abstracting one of the nine hydrogens from the /-butyl group as there are no others. Though the chloride in 65 is rather unreactive, it combines well with sulfide anions and the acyloin goes in good yield without any silicon.14... [Pg.182]

Benzene can undergo addition reactions which successively saturate the three formal double bonds, e.g. up to 6 chlorine atoms can be added under radical reaction conditions whilst catalytic hydrogenation gives cyclohexane. [Pg.55]

The reaction between hydrogen and chlorine is probably also of this type and many organic free radical reactions (e.g. the decomposition of ethanal) proceed via chain mechanisms. [Pg.89]

Other nonpolymeric radical-initiated processes include oxidation, autoxidation of hydrocarbons, chlorination, bromination, and other additions to double bonds. The same types of initiators are generally used for initiating polymerization and nonpolymerization reactions. Radical reactions are extensively discussed in the chemical Hterature (3—15). [Pg.220]

Substitution Reactions on the Methyl Group. The reactions that give substitution on the methyl group are generally high temperature and free-radical reactions. Thus, chlorination at ca 100°C, or in the presence of ultraviolet light and other free-radical initiators, successively gives benzyl chloride, benzal chloride, and benzotrichloride. [Pg.176]

Addition. Chlorine adds to vinyl chloride to form 1,1,2-trichloroethane [79-00-5] (44—46). Chlorination can proceed by either an ionic or a radical path. In the Hquid phase and in the dark, 1,1,2-trichloroethane forms by an ionic path when a transition-metal catalyst such as ferric chloride [7705-08-0], FeCl, is used. The same product forms in radical reactions up to 250°C. Photochernically initiated chlorination also produces... [Pg.414]

Vinyhdene chloride polymeri2es by both ionic and free-radical reactions. Processes based on the latter are far more common (23). Vinyhdene chloride is of average reactivity when compared with other unsaturated monomers. The chlorine substituents stabih2e radicals in the intermediate state of an addition reaction. Because they are also strongly electron-withdrawing, they polari2e the double bond, making it susceptible to anionic attack. For the same reason, a carbonium ion intermediate is not favored. [Pg.428]

Chemical initiation generates organic radicals, usually by decomposition of a2o (11) or peroxide compounds (12), to form radicals which then react with chlorine to initiate the radical-chain chlorination reaction (see Initiators). Chlorination of methane yields all four possible chlorinated derivatives methyl chloride, methylene chloride, chloroform, and carbon tetrachloride (13). The reaction proceeds by a radical-chain mechanism, as shown in equations 1 through. Chain initiation... [Pg.508]

Bonds may also be broken symmetrically such that each atom retains one electron of the pair that formed the covalent bond. This odd electron is not paired like all the other electrons of the atom, i.e. it does not have a partner of opposite spin. Atoms possessing odd unpaired electrons are termed free radicals and are indicated by a dot alongside the atomic or molecular structure. The chlorination of methane (see later) to produce methyl chloride (CH3CI) is a typical free-radical reaction ... [Pg.24]

In radical reactions not involving bromine or chlorine on the substrate, rearrangements are much rarer One example is the fluorination of di-tert butyl ketone which produces perfluormated / rt-buty isobutyl ketone [J5] Although isolated yields are poor only the rearranged ketone could be isolated This is perhaps only the second example of a 1,2-acyl shift Low fluorine substrate ratios show that this rearrangement occurs after monofluorination... [Pg.108]

This formation of Cl free radicals continues until all chlorine is consumed. Chloroform and carhon tetrachloride are formed in a similar way hy reaction of CHCI2 and CCI3 free radicals with chlorine. [Pg.139]

The chlorination of toluene by substituting the methyl hydrogens is a free radical reaction. A mixture of three chlorides (benzyl chloride, ben-zal chloride and benzotrichloride) results. [Pg.291]

As an example of an industrially useful radical reaction, look at the chlorination of methane to yield chloromethane. This substitution reaction is the first step in the preparation of the solvents dichloromethane (CHoCl ) and chloroform (CHCI3). [Pg.140]

Like many radical reactions in the laboratory, methane chlorination requires three kinds of steps initiation, propagation, and termination. [Pg.140]

The enhanced selectivity of alkane bromination over chlorination can be explained by turning once again to the Hammond postulate. In comparing the abstractions of an alkane hydrogen by Cl- and Br- radicals, reaction with Br- is less exergonic. As a result, the transition state for bromination resembles the alkyl radical more closely than does the transition state for chlorination, and the stability of that radical is therefore more important for bromination than for chlorination. [Pg.338]

The Lead-Off Reaction Addition of HBr to Alkenes Students usually attach great-importance to a text s lead-off reaction because it is the first reaction they see and is discussed in such detail. 1 use the addition of HBr to an alkene as the lead-off to illustrate general principles of organic chemistry for several reasons the reaction is relatively straightforward it involves a common but important functional group no prior knowledge of stereochemistry or kinetics in needed to understand it and, most important, it is a polar reaction. As such, 1 believe that electrophilic addition reactions represent a much more useful and realistic introduction to functional-group chemistry than a lead-off such as radical alkane chlorination. [Pg.1335]

The chlorine-containing product species (HCl, CIONO2, HOCl) are "inert reservoirs" because they are not directly involved in ozone depletion however, they eventually break down by absorbing solar radiation or by reaction with other free radicals, returning chlorine to its catalytically active form. Ozone is formed fastest in the upper stratosphere at tropical latitudes (by reactions 1 and 2), and in those regions a few percent of the chlorine is in its active "free radical" form the rest is in the "inert reservoir" form (see Figure 3). [Pg.27]

Atrazine is successively transformed to 2,4,6-trihydroxy-l,3,5-triazine (Pelizzetti et al. 1990) by dealkylation of the alkylamine side chains and hydrolytic displacement of the ring chlorine and amino groups (Figure 1.3). A comparison has been made between direct photolysis and nitrate-mediated hydroxyl radical reactions (Torrents et al. 1997) the rates of the latter were much greater under the conditions of this experiment, and the major difference in the products was the absence of ring hydroxylation with loss of chloride. [Pg.5]

After dosing methyl radicals and chlorine molecules onto CuaSi samples which were cooled to 180 K, mass spectrometry was used to identify the gas phase reaction products upon heating. The silane products have been identified by monitoring their characteristic ions, which include SiCU" " (m/e=168), CHaSiCla (m/e=148), SiCla" " (m/e=133), (CHa)2SiCl2+ (m/e=128), CHaSiCl2+ (m/e=113), (CHa)2SiCl+ (m/e=93), SKCHala" " (m/e=73). All of these ions are detected. On the other hand, no CHaCl (m/e=53) or SiH4+ (m/e=32) are observed. [Pg.309]

No systematic studies of a number of compoimds have yet appeared to discover correlations suggestive of mechanism. This paper presents the fractional conversions and reaction rates measured under reference conditions (50 mg contaminants/m ) in air at 7% relative humidity (1000 mg/m H2O), for 18 compounds including representatives of the important contaminant classes of alcohols, ethers, alkanes, chloroethenes, chloroalkanes, and aromatics. Plots of these conversions and rates vs. hydroxyl radical and chlorine radical rate constants, vs. the reactant coverage (dark conditions), and vs. the product of rate constant times coverage are constructed to discern which of the proposed mechanistic suggestions appear dominant. [Pg.435]

Halogenation, and particularly chlorination, unlike most radical reactions, is markedly influenced by the presence in the substrate of polar substituents this is because Cl, owing to the electronegativity of chlorine, is markedly electrophilic (c/. p. 314), and will therefore attack preferentially at sites of higher electron density. Chlorination will thus tend to be inhibited by the presence of electron-withdrawing groups, as is seen in the relative amounts of substitution at the four different carbon atoms in 1-chlorobutane (78) on photoehemically initiated chlorination at 35° ... [Pg.325]

Many of the quantitative rate data on radical reactions which are to be found in the scientific literature have been obtained by comparison of reaction rates rather than by direct measurement of absolute rate constants (Ingold, 1973). For example, it is a straightforward matter to compare the rate of chlorine abstraction from CC14 by phenyl radicals with the rate of hydrogen abstraction from cyclohexane by the same species, simply by comparing the PhCl/PhH product ratio from a suitable competition experiment (Bridger and Russell, 1963). In contrast, direct measurements of the absolute rates of these reactions have yet to be carried out (although indirect estimates are available). [Pg.27]

Chemical/Physical. Anticipated products from the reaction of 1,3-dichlorobenzene with atmospheric ozone or OH radicals are chlorinated phenols, ring cleavage products, and nitro compounds (Cupitt, 1980). Based on an assumed base-mediated 1% disappearance after 16 d at 85 C and pH 9.70 (pH 11.26 at 25 C), the hydrolysis half-life was estimated to be >900 yr (Ellington et al., 1988). 1,3-Dichlorobenzene (0.17-0.23 mM) reacted with OH radicals in water (pH 8.7) at a rate of 5.0 x 10 /M-sec (Haag and Yao, 1992). [Pg.396]


See other pages where Radical reactions chlorination is mentioned: [Pg.70]    [Pg.543]    [Pg.177]    [Pg.414]    [Pg.417]    [Pg.419]    [Pg.163]    [Pg.150]    [Pg.525]    [Pg.609]    [Pg.670]    [Pg.831]    [Pg.835]    [Pg.882]    [Pg.999]    [Pg.172]    [Pg.911]    [Pg.219]    [Pg.239]    [Pg.745]    [Pg.121]    [Pg.568]    [Pg.711]    [Pg.208]    [Pg.215]   
See also in sourсe #XX -- [ Pg.405 , Pg.408 ]

See also in sourсe #XX -- [ Pg.95 , Pg.104 , Pg.105 ]




SEARCH



Chlorination reactions

Chlorine radical

Chlorine reactions

Chlorins reactions

Radical chlorination

© 2024 chempedia.info