Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical 3-propanal

The Hammond Postulate applies only if both forward reactions are fast. Obtain energies for the transition states leading to 1 -propyl and 2-propyl radicals (propane+F end andpropane+F center). Draw an energy diagram for each hydrogen abstraction reaction (place the diagrams on the same axes). Do these diagrams indicate that use of the Hammond Postulate is justified Calculate the barrier for each reaction, and calculate the relative concentrations of 1-propyl and 2-propyl radicals that would form at 298 K if each reaction were irreversible. Use equation (2). How does this (kinetic) ratio compare to the equilibrium (thermodynamic) ratio of these radicals ... [Pg.41]

Similarly, propene can form by decomposition of primary propyl radicals and secondary free radicals. Propane can form by propyl radicals abstracting hydrogen from another source. [Pg.86]

The dissociation energy of the terminal C—H bond m propane is exactly the same as that of ethane The resulting free radical is primary (RCH2) m both cases... [Pg.169]

Because the starting material (propane) and one of the products (H ) are the same m both processes the difference m bond dissociation energies is equal to the energy dif ference between an n propyl radical (primary) and an isopropyl radical (secondary) As depicted m Figure 4 20 the secondary radical is 13 kJ/mol (3 kcal/mol) more stable than the primary radical... [Pg.170]

FIGURE 4 20 The bond dis sociation energies of methy lene and methyl C—H bonds in propane reveal difference in stabilities between two isomeric free radicals The secondary radical is more stable than the primary... [Pg.171]

Cleavage of the carbon-carbon bond in ethane yields two methyl radicals whereas propane yields an ethyl radical and one methyl radical Ethyl radical is more stable than methyl and so less energy is required to break the carbon-carbon bond in propane than in ethane The measured carbon-carbon bond dissociation energy in ethane is 368 kJ/mol (88 kcal/mol) and that in propane is 355 kJ/mol (85 kcal/mol)... [Pg.171]

The degree to which allylic radicals are stabilized by delocalization of the unpaired electron causes reactions that generate them to proceed more readily than those that give simple alkyl radicals Compare for example the bond dissociation energies of the pri mary C—H bonds of propane and propene... [Pg.395]

Breaking a bond to a primary hydrogen atom m propene requires less energy by 42 kJ/mol (10 kcal/mol) than m propane The free radical produced from propene is allylic and stabilized by electron delocalization the one from propane is not... [Pg.396]

Sulfoxides. Sulfoxides, R — SO—R, are named by placing the names of the radicals in alphabetical order before the word sulfoxide. Alternatively, the less senior radical is named followed by sulfinyl- and concluded by the name of the senior group. For example, CH3CH2—SO—CH2CH2CH3 is named either ethyl propyl sulfoxide or l-(ethylsulfinyl)propane. [Pg.38]

The changeover from ROO radicals to HOO radicals and the switch from organic peroxides to HOOH has been shown as temperature is increased in propane VPO (87,141). Tracer experiments have been used to explore product sequences in propane VPO (142—145). Propylene oxide comes exclusively from propylene. Ethylene, acetaldehyde, formaldehyde, methanol, carbon monoxide, and carbon dioxide come from both propane and propylene. Ethanol comes exclusively from propane. [Pg.341]

At combustion temperatures, the oxidation of butane [106-97-8] is similar to that of propane (153). This is because most butyl radicals are consumed by carbon—carbon bond scission (reaction 28). [Pg.341]

Irradiation of ethyleneimine (341,342) with light of short wavelength ia the gas phase has been carried out direcdy and with sensitization (343—349). Photolysis products found were hydrogen, nitrogen, ethylene, ammonium, saturated hydrocarbons (methane, ethane, propane, / -butane), and the dimer of the ethyleneimino radical. The nature and the amount of the reaction products is highly dependent on the conditions used. For example, the photoproducts identified ia a fast flow photoreactor iacluded hydrocyanic acid and acetonitrile (345), ia addition to those found ia a steady state system. The reaction of hydrogen radicals with ethyleneimine results ia the formation of hydrocyanic acid ia addition to methane (350). Important processes ia the photolysis of ethyleneimine are nitrene extmsion and homolysis of the N—H bond, as suggested and simulated by ab initio SCF calculations (351). The occurrence of ethyleneimine as an iatermediate ia the photolytic formation of hydrocyanic acid from acetylene and ammonia ia the atmosphere of the planet Jupiter has been postulated (352), but is disputed (353). [Pg.11]

Only 20—40% of the HNO is converted ia the reactor to nitroparaffins. The remaining HNO produces mainly nitrogen oxides (and mainly NO) and acts primarily as an oxidising agent. Conversions of HNO to nitroparaffins are up to about 20% when methane is nitrated. Conversions are, however, often ia the 36—40% range for nitrations of propane and / -butane. These differences ia HNO conversions are explained by the types of C—H bonds ia the paraffins. Only primary C—H bonds exist ia methane and ethane. In propane and / -butane, both primary and secondary C—H bonds exist. Secondary C—H bonds are considerably weaker than primary C—H bonds. The kinetics of reaction 6 (a desired reaction for production of nitroparaffins) are hence considerably higher for both propane and / -butane as compared to methane and ethane. Experimental results also iadicate for propane nitration that more 2-nitropropane [79-46-9] is produced than 1-nitropropane [108-03-2]. Obviously the hydroxyl radical attacks the secondary bonds preferentially even though there are more primary bonds than secondary bonds. [Pg.36]

Joining two heteroatoms to a ring by radical combination is not presently a common route to heterocycles. It might become more important if the art of metal-catalyzed redox reactions keeps advancing at the present pace. Current examples are the conversion of 1,5-dithiols to 1,2-dithiepanes by oxidants such as FeCla, and the oxidation of 1,3-propane-bis-hydrazines to 1,2,3,4-tetrazepines (Sections 5.18.4.1 and 5.18.10.1). [Pg.32]

In the second paper the models were amplified for ethane, 49 reactions with 11 molecular species and 9 free radicals for propane, 80 reactions with 11 molecular species and 11 free radicals. The second paper has a list of 133 reactions involving light hydrocarbons and their first- or second-order specific rates. [Pg.2079]

It is possible to regard radicofunctional nomenclature, in which the functional class narrie of a compound (c.g. alcohol, ketone, etc.) is cited after the names of the attached radicals, as involving an additive procedure (example 146). This type of nomenclature is gradually falling out of use in favor of the substitutive equivalent [for 146 the substitutive name would be l-(3-pyridyl)propan-l-one]. [Pg.37]

The substitution of one hydroxyl radical for a hydrogen atom in propane produces propyl alcohol, or propanol, which has several uses. Its molecular formula is C3H7OH. Propyl alcohol has a flash point of 77°F and, like all the alcohols, bums with a pale blue flame. More commonly known is the isomer of propyl alcohol, isopropyl alcohol. Since it is an isomer, it has the same molecular formula as propyl alcohol but a different structural formula. Isopropyl alcohol has a flash point of 53 F. Its ignition temperamre is 850°F, while propyl alcohol s ignition temperature is 700 F, another effect of the different stmcture. Isopropyl alcohol, or 2-propanol (its proper name) is used in the manufacture of many different chemicals, but is best known as rubbing alcohol. [Pg.198]

Consider abstraction of a hydrogen atom from propan( by fluorine atom. This can generate either of two propy radicals, depending on which hydrogen is attacked. [Pg.64]

Add the energies of propane and fluorine atom (at left (the reactants), and then the energies of 1-propyl radica (or 2-propyl radical) and hydrogen fluoride (th( products). Are these reactions exothermic or endothermic If the former, then calculate the relative concentrations 0 1-propyl radical and 2-propyl radical that would exist ii an equilibrium mixture at 298 K. Use equation (1). [Pg.64]

As a result, the central radical R3 is formed, and the fragment with the end methyl group breaks down into propane and a new fragment with the end vinyl group. [Pg.89]


See other pages where Radical 3-propanal is mentioned: [Pg.1207]    [Pg.1207]    [Pg.64]    [Pg.1214]    [Pg.178]    [Pg.1123]    [Pg.1146]    [Pg.846]    [Pg.176]    [Pg.338]    [Pg.35]    [Pg.99]    [Pg.438]    [Pg.703]    [Pg.190]    [Pg.200]    [Pg.779]    [Pg.176]    [Pg.65]    [Pg.65]    [Pg.305]    [Pg.305]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



© 2024 chempedia.info