Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radiation laser sources

Flowever, in order to deliver on its promise and maximize its impact on the broader field of chemistry, the methodology of reaction dynamics must be extended toward more complex reactions involving polyatomic molecules and radicals for which even the primary products may not be known. There certainly have been examples of this notably the crossed molecular beams work by Lee [59] on the reactions of O atoms with a series of hydrocarbons. In such cases the spectroscopy of the products is often too complicated to investigate using laser-based techniques, but the recent marriage of intense syncluotron radiation light sources with state-of-the-art scattering instruments holds considerable promise for the elucidation of the bimolecular and photodissociation dynamics of these more complex species. [Pg.881]

Unlike the typical laser source, the zero-point blackbody field is spectrally white , providing all colours, CO2, that seek out all co - CO2 = coj resonances available in a given sample. Thus all possible Raman lines can be seen with a single incident source at tOp Such multiplex capability is now found in the Class II spectroscopies where broadband excitation is obtained either by using modeless lasers, or a femtosecond pulse, which on first principles must be spectrally broad [32]. Another distinction between a coherent laser source and the blackbody radiation is that the zero-point field is spatially isotropic. By perfonuing the simple wavevector algebra for SR, we find that the scattered radiation is isotropic as well. This concept of spatial incoherence will be used to explain a certain stimulated Raman scattering event in a subsequent section. [Pg.1197]

In order to achieve a reasonable signal strength from the nonlinear response of approximately one atomic monolayer at an interface, a laser source with high peak power is generally required. Conuuon sources include Q-switched ( 10 ns pulsewidth) and mode-locked ( 100 ps) Nd YAG lasers, and mode-locked ( 10 fs-1 ps) Ti sapphire lasers. Broadly tunable sources have traditionally been based on dye lasers. More recently, optical parametric oscillator/amplifier (OPO/OPA) systems are coming into widespread use for tunable sources of both visible and infrared radiation. [Pg.1281]

Figure 5.13 shows a typical experimental arrangement for obtaining the Raman spectmm of a gaseous sample. Radiation from the laser source is focused by the lens Lj into a cell containing the sample gas. The mirror Mj reflects this radiation back into the cell to increase... [Pg.122]

An FT-Raman spectrometer is often simply an FTIR spectrometer adapted to accommodate the laser source, filters to remove the laser radiation and a variety of infrared detectors. [Pg.124]

Lasers act as sources and sometimes as amplifiers of coherent k—uv radiation. Excitation in lasers is provided by external particle or photon pump sources. The high energy densities requked to create inverted populations often involve plasma formation. Certain plasmas, eg, cadmium, are produced by small electric discharges, which act as laser sources and amplifiers (77). Efforts that were dkected to the improvement of the energy conversion efficiencies at longer wavelengths and the demonstration of an x-ray laser in plasma media were successful (78). [Pg.114]

The word laser is an acronym for light amplification by the stimulated emission of radiation. Lasers of all kinds consist of several basic components an active medium, an outside energy source, and an optical cavity with carefully designed mirrors on both ends. One of the mirrors is 100 percent reflective... [Pg.703]

Since our main objective was to remove all the chlorine and hydrogen atoms from the polymer chain, C-PVC films were further exposed to the UV radiation of the medium pressure mercury-lamp. This led to a dark brown material w.hich was found to be unable to carry an electrical current, even after extended irradiation time. Therefore we turned to a powerful laser source, a 15 W argon ion laser tuned to its continuous emission at 488.1 nm. At that wavelength, the degraded polymer film absorbs about 30 % of the incident laser photons. The sample was placed on a X-Y stage and exposed to the laser beam at scanning rates in the range of 1 to 50 cm s, in the presence of air. [Pg.207]

Two types of radiation sources are used in IR sensing. Common sources are thermal broadband emitters. The second type are laser sources, mostly semiconductor lasers. The application of (monochromatic) laser sources trades the ability of multi-component detection against higher sensitivity for pre-defined target analytes. Hence, laser sources are primarily suitable for sensitive sensing in well-defined, stable systems, also because spectrally interfering substances can neither be detected as such nor compensated. [Pg.136]

In practical application, Raman sensors exclusively use frequency-stabilised laser sources to compensate for the low intensity of the Raman radiation. For Raman sensors, prevalently compact high-intensity external cavity laser diodes are used, operated in CW (continuous wave) mode. These diode lasers combine high intensity with the spectral stability required for Raman applications and are commercially available at various wavelengths. [Pg.149]

A useful source of continuously tunable radiation from the near UV to the near-IR with unexplored potential in fluorescence studies is the optical parametric oscillator (OPO). These devices have been around since the 1960s(73) and have received a lot of coverage recently in laser and optoelectronic journals/74 This resurgence of interest in OPOs has been brought about by recent improvements in nonlinear crystals and the development of all-solid-state pump-laser sources with the required levels of coherence and intensity. [Pg.400]

With the development of CO 2 lasers, work on the infrared photochemistry of boron compounds is now appearing in the literature. Future woric on these compounds with UV laser sources is also expected. In this review the effect of radiation on boron compounds in the photon energy range 0.1 eV (CO2 laser) to 10.2 eV (H-a line) is examined. The range of tropics extends from the use of photochemical techniques for synthesis of new compounds to the production and isolation of reactive photochemical intermediates. The photochemistry of borazine is most extensively discussed. [Pg.6]

Sample handling is simplified as glass can be used for windows, lenses, and any other optical components. In addition, the laser source is easily focused on small sample area. Very small samples can be investigated without time-consuming preparation. It is also possible for the source radiation to be transmitted through optical fibers. The fiber-optic probe can be in contact with the sample or immersed in it. The probe consists of input fibers surrounded by several collection fibers that transport the scattered radiation to the monochromator. This makes it possible to collect spectra directly under relatively adverse conditions. [Pg.379]

To locate the position of the moving mirror with great precision, we superimpose in the apparatus a laser source of monochromatic radiation (v = 15 800 cm-1), which permits a computer to pick up a point of the interferogram each time the laser light is extinguished. [Pg.188]

He/Ne laser focussed into a small tapered hole in a pellet of the plastic. The flux density achieved at the focus was about 1000 Watts/cma. The scattered radiation was examined using a double spectrometer and photon-counting detection. A very fine spectrum, superior even to that of Maklakov and Nikitin (see Table 1), was recorded photo-electrically. Schaufele pointed out that a band atAv= 109cm-1 forecast previously by Tadokoro et aL (15) was not observed at first but in a note added in proof he mentions that a feature may be genuine at 98 2 cm-1. A band had already been observed at Av= 110cm-1 by instrument developers at the Cary Instrument Co. since Szymanski (16) shows a spectrum of isotactic polypropylene, recorded at Monrovia, Calif., on a laser sourced Cary 81 spectrometer, as an example of recent advances in Raman spectroscopy. [Pg.159]


See other pages where Radiation laser sources is mentioned: [Pg.2452]    [Pg.2453]    [Pg.315]    [Pg.2452]    [Pg.2453]    [Pg.315]    [Pg.1247]    [Pg.1280]    [Pg.1280]    [Pg.1296]    [Pg.2962]    [Pg.134]    [Pg.363]    [Pg.379]    [Pg.389]    [Pg.395]    [Pg.315]    [Pg.319]    [Pg.414]    [Pg.9]    [Pg.946]    [Pg.125]    [Pg.163]    [Pg.362]    [Pg.36]    [Pg.134]    [Pg.179]    [Pg.151]    [Pg.112]    [Pg.258]    [Pg.377]    [Pg.150]    [Pg.36]    [Pg.695]    [Pg.911]    [Pg.912]    [Pg.34]   
See also in sourсe #XX -- [ Pg.415 ]




SEARCH



Laser radiation

Laser sources

Laser-based radiation sources

Radiation sources

© 2024 chempedia.info