Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Racemization of Secondary Alcohols

The alcoholic solvent was essential for this catalytic cycloisomerization [27]. On the basis of studies using the known ruthenium hydrides and deuterium-labeling substrates, a mechanism involving an intermediary ruthenacyclopentane was proposed (Eq. 12.25). [Pg.323]

Racemization of an enantiomer which is undesirable for kinetic resolution is important from both an economical and an environmental point of view. Transition metal-catalyzed hydrogen transfer from alcohols to ketones has been recently used for racemization of secondary alcohols. [Pg.323]

The ruthenium-catalyzed racemization of a-methylbenzyl alcohol was combined with an enzyme-catalyzed transesterification with lipase. Dinuclear ruthenium complex 64 effectively catalyzes the racemization of a-methylbenzyl alcohol and the combination of 64, p-chlorophenyl acetate, and enzyme N-435 in the reaction of racemic amethylbenzyl alcohol gave enantiomerically pure (R)-a-methylbenzyl acetate in the excellent yield (Eq. 12.26) [29]. [Pg.323]

Ito et al. developed an effective catalyst for racemization of chiral non-racemic secondary alcohols. Catalytic system, Cp RuCl(cod)/Ph2P(CH2)2NH2/tBuOK, effects extremely rapid racemization (Eq. 12.28). These authors proposed the in-situ formation of a coordinatively unsaturated (16 e) Cp Ru(amido) complex 68 as an active species [32]. [Pg.324]


All the Ru-based racemization catalysts described earUer are air-sensitive and thus difficult to reuse. We found that a modified Ru complex 7 was air-stable and recyclable, in particular, in a polymer-supported form 8. The racemization of secondary alcohols with 7 took place equally well under both oxygen and argon atmospheres. The subsequent DKRs of several alcohols using 7 or 8 under aerobic... [Pg.69]

Many different metal catalysts have been explored for racemization of secondary alcohols. Among them, ruthenium-based organometallic complexes have been most intensively tested as the racemization catalyst (Figure 1.1). [Pg.5]

These ruthenium catalysts catalyze the racemization of secondary alcohol through a dehydrogenation/hydrogenation cycle with or without releasing ketone as a byproduct (Scheme 1.5). Catalysts 6-9 display good activities at room temperature, while others show satisfactory activities at elevated temperatures. Catalyst 1, for example, requires a high temperature (70 °C) for dissociation into two monomeric species (la and lb) acting as racemization catalysts (Scheme 1.6). [Pg.5]

Dijksman, A. Elzinga, M., J. Li, Yu-Xin, Arends, I., Sheldon, R., A. Efficient ruthenium-catalyzed racemization of secondary alcohols application to dynamic kinetic resolution. Tetrahedron Asymmetry 2002, 13, 879-884. [Pg.227]

Otvos, L., Gruber, L., Meisel-Agoston, J. The Meerwein-Ponndorf-Verley-Oppenauer reaction. I. Investigation of the reaction mechanism with radiocarbon. Racemization of secondary alcohols. Acta Chim. Acad. Sci. Hung. 1965,43, 149-153. [Pg.642]

It has been shown that inexpensive aluminium-based catalysts can effect the racemization of secondary alcohols at ambient temperature. The reactivity of the complexes may be increased through the use of a bidentate ligand such as BINOL (Scheme 4.35)[86). [Pg.147]

A simplified mechanism for the Ru-catalyzed racemization of secondary alcohol is described in Scheme 5.4. The racemization takes place via ketone. Ru catalysts 5-10 normally catalyze the racemization without releasing free ketone and thus provide the higher 3delds in DKR. [Pg.118]

The second group of studies tries to explain the solvent effects on enantioselectivity by means of the contribution of substrate solvation to the energetics of the reaction [38], For instance, a theoretical model based on the thermodynamics of substrate solvation was developed [39]. However, this model, based on the determination of the desolvated portion of the substrate transition state by molecular modeling and on the calculation of the activity coefficient by UNIFAC, gave contradictory results. In fact, it was successful in predicting solvent effects on the enantio- and prochiral selectivity of y-chymotrypsin with racemic 3-hydroxy-2-phenylpropionate and 2-substituted 1,3-propanediols [39], whereas it failed in the case of subtilisin and racemic sec-phenetyl alcohol and traws-sobrerol [40]. That substrate solvation by the solvent can contribute to enzyme enantioselectivity was also claimed in the case of subtilisin-catalyzed resolution of secondary alcohols [41]. [Pg.13]

An alternative approach to the microbial deracemization of secondary alcohols is to use two different microorganisms with complementary stereoselectivity. Fantin et al. studied the stereoinversion of several secondary alcohols using the culture supernatants of two microorganisms, namely Bacillus stearothermophilus and Yarrowia lipolytica (Figure 5.18) [31]. The authors tested three main systems for deracemization. First, they used the supernatant from cultures of B. stearothermophilus, to which they added Y. lipolytica cells and the racemic alcohols. Secondly, they used the culture supernatant of Y. lipolytica and added B. stearothermophilus cells and the racemic alcohols. Finally, they resuspended the cells of both organisms in phosphate buffer and added the racemic alcohols. The best results were obtained in the first system with 6-penten-2-ol (26) (100% ee and 100% yield). The phosphate buffer system gave... [Pg.124]

The enzymatic KR between racemic amines and nonactivated esters using a lipase as biocatalyst is shown in Scheme 7.15. In the same manner as in the transesterification of secondary alcohols, this process fits Kazlauskas rule [32], where normally if the large group (L) has larger priority than medium group (M), the (R)-amide is obtained. In general, major size differences between both groups result in better enantios-electivities ( ). [Pg.180]

The DKR of secondary alcohols can be efficiently performed via enzymatic acylation coupled with simultaneous racemization of the substrates. This method was first used by BackvaU for the resolution of 1-phenylethanol and 1-indanol [38]. Racemization of substrate 18 by a mthenium catalyst (Scheme 5.11) was combined with transesterification using various acyl donors and catalyzed by C.antarctica B Hpase. From aU the acyl donors studied, 4-chlorophenyl acetate was found to be the best. The desired product 19 was obtained in 80% yield and over 99% ee. [Pg.104]

Stereoinversion Stereoinversion can be achieved either using a chemoenzymatic approach or a purely biocatalytic method. As an example of the former case, deracemization of secondary alcohols via enzymatic hydrolysis of their acetates may be mentioned. Thus, after the first step, kinetic resolution of a racemate, the enantiomeric alcohol resulting from hydrolysis of the fast reacting enantiomer of the substrate is chemically transformed into an activated ester, for example, by mesylation. The mixture of both esters is then subjected to basic hydrolysis. Each hydrolysis proceeds with different stereochemistry - the acetate is hydrolyzed with retention of configuration due to the attack of the hydroxy anion on the carbonyl carbon, and the mesylate - with inversion as a result of the attack of the hydroxy anion on the stereogenic carbon atom. As a result, a single enantiomer of the secondary alcohol is obtained (Scheme 5.12) [8, 50a]. [Pg.105]

DKR requires two catalysts one for resolution and one for racemization. We and others have developed a novel strategy using enzyme as the resolution catalyst and metal as the racemization catalyst as shown in Scheme 1. The R-selecfive DKR can be achieved by combining a R-selective enzyme with a proper metal catalyst and its counterpart by the combination of the metal catalyst with a -selective enzyme. This strategy has been demonstrated to be applicable to the DKR of secondary alcohols, allylic esters, and primary amines. Among them, the DKR of secondary alcohols has been the most successful. [Pg.60]

The KR of secondary alcohols by some hydrolytic enzymes has been well known. The combinations of these hydrolytic enzymes with racemization catalysts have been explored as the catalysts for the efficient DKR of the secondary alcohols. Up to now, lipase and subtilisin have been employed, respectively, as the R- and 5-selective resolution enzymes in combination with metal catalysts (Scheme 2). [Pg.60]

Later, in a modification to the above system, we reported the use of an indenylruthenium complex 2 as a racemization catalyst for the DKR of secondary alcohols, which does not require ketones but a weak base hke triethylamine and molecular oxygen to be achvated. The DKR with 2 in combination with immobilized Pseudomonas cepacia lipase (PCL, trade name. Lipase PS-C ) was carried out at a lower temperature (60°C) and provided good yields and high optical purities (Table 2). This paved the way for the omission of ketones as... [Pg.62]

The catalytic alcohol racemization with diruthenium catalyst 1 is based on the reversible transfer hydrogenation mechanism. Meanwhile, the problem of ketone formation in the DKR of secondary alcohols with 1 was identified due to the liberation of molecular hydrogen. Then, we envisioned a novel asymmetric reductive acetylation of ketones to circumvent the problem of ketone formation (Scheme 6). A key factor of this process was the selection of hydrogen donors compatible with the DKR conditions. 2,6-Dimethyl-4-heptanol, which cannot be acylated by lipases, was chosen as a proper hydrogen donor. Asymmetric reductive acetylation of ketones was also possible under 1 atm hydrogen in ethyl acetate, which acted as acyl donor and solvent. Ethanol formation from ethyl acetate did not cause critical problem, and various ketones were successfully transformed into the corresponding chiral acetates (Table 17). However, reaction time (96 h) was unsatisfactory. [Pg.73]

DKR of secondary alcohols with acidic zeolite (for racemization) and enzyme (CALB) (for esterification) LbL deposition onto zeolite itself... [Pg.148]

The phenylcarbamate derivative 23j also showed chiral recognition for many racemates in CDCI3 (Figure 3.38). Figure 3.39 shows the 1H NMR spectra of ( )-2-butanol in the absence and presence of 23j. In the case of secondary alcohols, such as 2-butanol, 2-heptanol, and 2-octanol, the methyl protons at the end of the longer chain and remote from the stereogenic center were enantiomerically separated in the presence of 23j, and the methine and... [Pg.191]

Another method for determining the absolute configurations of secondary alcohols is Horeau s method, which is based on kinetic resolution. As shown in Scheme 1-14, an optically active alcohol reacts with racemic 2-phenylbutanoic anhydride (54), and an optically active 2-phenylbutanoic acid (52) is obtained after hydrolysis of the half-reacted anhydride. [Pg.40]

Stereoselective kinetic control of the 0-methylation of racemic mixtures of secondary alcohols has been reported using (S)-(+)-(2-methylbutyl)triethylammo-nium bromide as the catalyst [27]. However, the claim that the (/ )-(+)-methyl ether (48% ee) is produced from racemic 1-hydroxy-1-phenylethane leaving the (S)-alcohol unchanged has been shown to be totally spurious [28]. [Pg.535]

The enzymatic resolution of racemic substrates now is a well-established approach for the synthesis of single enantiomers [1, 2]. A representative example is the kinetic resoluhon of secondary alcohols via lipase-catalyzed transesterification for the preparation of enantiomericaUy enriched alcohols and esters [3], The enzymatic resolution in general is straightforward and satisfactory in terms of optical purity, but it has an intrinsic Hmitation in that the theoretical maximum yield of a desirable enantiomer cannot exceed 50%. Accordingly, additional processes such as isolation, racemization and recycling of unwanted isomers are required to obtain the desirable isomer in a higher yield (Scheme 1.1). [Pg.3]

DKR of secondary alcohol is achieved by coupling enzyme-catalyzed resolution with metal-catalyzed racemization. For efficient DKR, these catalyhc reactions must be compatible with each other. In the case of DKR of secondary alcohol with the lipase-ruthenium combinahon, the use of a proper acyl donor (required for enzymatic reaction) is parhcularly crucial because metal catalyst can react with the acyl donor or its deacylated form. Popular vinyl acetate is incompatible with all the ruthenium complexes, while isopropenyl acetate can be used with most monomeric ruthenium complexes. p-Chlorophenyl acetate (PCPA) is the best acyl donor for use with dimeric ruthenium complex 1. On the other hand, reaction temperature is another crucial factor. Many enzymes lose their activities at elevated temperatures. Thus, the racemizahon catalyst should show good catalytic efficiency at room temperature to be combined with these enzymes. One representative example is subtilisin. This enzyme rapidly loses catalytic activities at elevated temperatures and gradually even at ambient temperature. It therefore is compatible with the racemization catalysts 6-9, showing good activities at ambient temperature. In case the racemization catalyst requires an elevated temperature, CALB is the best counterpart. [Pg.7]

The first use of a metal catalyst in the DKR of secondary alcohols was reported by Williams et al. [7]. In this work, various rhodium, iridium, ruthenium and aluminum complexes were tested. Among them, only Rh2(OAc)4 and [Rh(cod)Cl]2 showed reasonable activity as the racemization catalyst in the DKR of 1-phenylethanol. The racemization occurred through transfer-hydrogenation reactions and required stoichiometric amounts of ketone as hydrogen acceptor. The DKR of 1-phenylethanol performed with Rh2(OAc)4 and Pseudomonas Jluore-scens lipase gave (R)-l-phenylethyl acetate of 98%e.e. at 60% conversion after 72 h. [Pg.8]


See other pages where Racemization of Secondary Alcohols is mentioned: [Pg.111]    [Pg.309]    [Pg.323]    [Pg.323]    [Pg.1705]    [Pg.111]    [Pg.309]    [Pg.323]    [Pg.323]    [Pg.1705]    [Pg.229]    [Pg.95]    [Pg.135]    [Pg.231]    [Pg.106]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.165]    [Pg.450]    [Pg.195]    [Pg.137]    [Pg.139]    [Pg.140]    [Pg.8]    [Pg.10]    [Pg.11]    [Pg.12]    [Pg.12]    [Pg.13]    [Pg.14]   


SEARCH



Alcohols secondary alcohol

Racemization alcohols

© 2024 chempedia.info