Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic racemic resolution

Clearly, there is a need for techniques which provide access to enantiomerically pure compounds. There are a number of methods by which this goal can be achieved . One can start from naturally occurring enantiomerically pure compounds (the chiral pool). Alternatively, racemic mixtures can be separated via kinetic resolutions or via conversion into diastereomers which can be separated by crystallisation. Finally, enantiomerically pure compounds can be obtained through asymmetric synthesis. One possibility is the use of chiral auxiliaries derived from the chiral pool. The most elegant metliod, however, is enantioselective catalysis. In this method only a catalytic quantity of enantiomerically pure material suffices to convert achiral starting materials into, ideally, enantiomerically pure products. This approach has found application in a large number of organic... [Pg.77]

The 9 — 15 fragment was prepared by a similar route. Once again Sharpless kinetic resolution method was applied, but in the opposite sense, i.e., at 29% conversion a mixture of the racemic olefin educt with the virtually pure epoxide stereoisomer was obtained. On acid-catalysed epoxide opening and lactonization the stereocentre C-12 was inverted, and the pure dihydroxy lactone was isolated. This was methylated, protected as the acetonide, reduced to the lactol, protected by Wittig olefination and silylation, and finally ozonolysed to give the desired aldehyde. [Pg.322]

EinaHy, kinetic resolution of racemic olefins and aHenes can be achieved by hydroboration. The reaction of an olefin or aHene racemate with a deficient amount of an asymmetric hydroborating agent results in the preferential conversion of the more reactive enantiomer into the organoborane. The remaining unreacted substrate is enriched in the less reactive enantiomer. Optical purities in the range of 1—65% have been reported (471). [Pg.323]

Enzymatic hydrolysis of A/-acylamino acids by amino acylase and amino acid esters by Hpase or carboxy esterase (70) is one kind of kinetic resolution. Kinetic resolution is found in chemical synthesis such as by epoxidation of racemic allyl alcohol and asymmetric hydrogenation (71). New routes for amino acid manufacturing are anticipated. [Pg.279]

Quantitative Analysis of Selectivity. One of the principal synthetic values of enzymes stems from their unique enantioselectivity, ie, abihty to discriminate between enantiomers of a racemic pair. Detailed quantitative analysis of kinetic resolutions of enantiomers relating the extent of conversion of racemic substrate (c), enantiomeric excess (ee), and the enantiomeric ratio (E) has been described in an excellent series of articles (7,15,16). [Pg.331]

Enzyme-Catalyzed Asymmetric Synthesis. The extent of kinetic resolution of racemates is determined by differences in the reaction rates for the two enantiomers. At the end of the reaction the faster reacting enantiomer is transformed, leaving the slower reacting enantiomer unchanged. It is apparent that the maximum product yield of any kinetic resolution caimot exceed 50%. [Pg.332]

Kinetic Resolutions. From a practical standpoint the principal difference between formation of a chiral molecule by kinetic resolution of a racemate and formation by asymmetric synthesis is that in the former case the maximum theoretical yield of the chiral product is 50% based on a racemic starting material. In the latter case a maximum yield of 100% is possible. If the reactivity of two enantiomers is substantially different the reaction virtually stops at 50% conversion, and enantiomericaHy pure substrate and product may be obtained ia close to 50% yield. Convenientiy, the enantiomeric purity of the substrate and the product depends strongly on the degree of conversion so that even ia those instances where reactivity of enantiomers is not substantially different, a high purity material may be obtained by sacrificing the overall yield. [Pg.337]

Various racemic secondary alcohols with different substituents, eg, a-hydroxyester (60), are resolved by PFL neatly quantitatively (75). The effect of adjacent unsatuiation on enzyme-catalyzed kinetic resolutions was thoroughly studied for a series of aHyUc (61), propargyUc (62), and phenyl-substituted 2-aIkanols (76,77). Excellent selectivity was observed for (E)-aHyhc alcohols whereas (Z)-isomers showed poor selectivity (76). [Pg.340]

The application of the AE reaction to kinetic resolution of racemic allylic alcohols has been extensively used for the preparation of enantiomerically enriched alcohols and allyl epoxides. Allylic alcohol 48 was obtained via kinetic resolution of the racemic secondary alcohol and utilized in the synthesis of rhozoxin D. Epoxy alcohol 49 was obtained via kinetic resolution of the enantioenriched secondary allylic alcohol (93% ee). The product epoxy alcohol was a key intermediate in the synthesis of (-)-mitralactonine. Allylic alcohol 50 was prepared via kinetic resolution of the secondary alcohol and the product utilized in the synthesis of (+)-manoalide. The mono-tosylated 3-butene-1,2-diol is a useful C4 building block and was obtained in 45% yield and in 95% ee via kinetic resolution of the racemic starting material. [Pg.59]

A noteworthy feature of the Sharpless Asymmetric Epoxidation (SAE) is that kinetic resolution of racemic mixtures of chiral secondary allylic alcohols can be achieved, because the chiral catalyst reacts much faster with one enantiomer than with the other. A mixture of resolved product and resolved starting material results which can usually be separated chromatographically. Unfortunately, for reasons that are not yet fully understood, the AD is much less effective at kinetic resolution than the SAE. [Pg.686]

Kinetic resolution of the racemic aziridine-2-carboxylate 82 (Scheme 3.26) was reported by Iqbal and co-workers [74], When 82 was allowed to react with N-cinna-moyl-L-proline (81) under mixed anhydride coupling conditions, the N-acyl azir-idine 83 was obtained in optically pure form along with aziridine 84. [Pg.84]

Jacobsen has utilized [(salen)Co]-catalyzed kinetic resolutions of tenninal epoxides to prepare N-nosyl aziridines with high levels of enantioselectivity [72], A range of racemic aryl and aliphatic epoxides are thus converted into aziridines in a four-step process, by sequential treatment with water (0.55 equivalents), Ns-NH-BOC, TFA, Ms20, and carbonate (Scheme 4.49). Despite the apparently lengthy procedure, overall yields of the product aziridines are excellent and only one chromatographic purification is required in the entire sequence. [Pg.139]

Catalytic kinetic resolution can be the method of choice for the preparation of enantioenriched materials, particularly when the racemate is inexpensive and readily available and direct asymmetric routes to the optically active compounds are lacking. However, several other criteria-induding catalyst selectivity, efficiency, and cost, stoichiometric reagent cost, waste generation, volumetric throughput, ease of product isolation, scalability, and the existence of viable alternatives from the chiral pool (or classical resolution)-must be taken into consideration as well... [Pg.250]

Two recent reports described addition of nitrogen-centered nucleophiles in usefully protected fonn. Jacobsen reported that N-Boc-protected sulfonamides undergo poorly selective (salen) Co-catalyzed addition to racemic epoxides. However, by performing a one-pot, indirect kinetic resolution with water first (HKR, vide infra, Table 7.1) and then sulfonamide, it was possible to obtain highly enantiomer-ically enriched addition products (Scheme 7.39) [71]. These products were transformed into enantioenriched terminal aziridines in straightforward manner. [Pg.254]

The principle cost determinant in typical hydrolytic or phenolic resolutions is the cobalt catalyst, despite the relatively low catalyst loadings used in most cases and the demonstrated recyclability with key substrates. From this standpoint, recently developed oligomeric (salen)Co complexes, discussed earlier in this chapter in the context of the hydrolytic desymmetrization of meso-epoxides (Scheme 7.16), offer significant advantages for kinetic resolutions of racemic terminal epoxides (Table 7.3) [29-31]. For the hydrolytic and phenolic kinetic resolutions, the oligo-... [Pg.258]

One way of overcoming these problems is by kinetic resolution of racemic epoxides. Jacobsen has been very successful in applying chiral Co-salen catalysts, such as 21, in the kinetic resolution of terminal epoxides (Scheme 9.18) [83]. One enantiomer of the epoxide is converted into the corresponding diol, whereas the other enantiomer can be recovered intact, usually with excellent ee. The strategy works for a variety of epoxides, including vinylepoxides. The major limitation of this strategy is that the maximum theoretical yield is 50%. [Pg.328]

Scheme 9.20 Dynamic kinetic resolution of racemic epoxide... Scheme 9.20 Dynamic kinetic resolution of racemic epoxide...
Cu(i(-catalyzed kinetic resolutions of racemic, cyclic 1,3-diene monoepoxides through the use of dialkylzinc [123] or trialkylaluminium reagents [124] have re-... [Pg.336]

Since the addition of dialkylzinc reagents to aldehydes can be performed enantioselectively in the presence of a chiral amino alcohol catalyst, such as (-)-(1S,2/ )-Ar,A -dibutylnorephedrine (see Section 1.3.1.7.1.), this reaction is suitable for the kinetic resolution of racemic aldehydes127 and/or the enantioselective synthesis of optically active alcohols with two stereogenic centers starting from racemic aldehydes128 129. Thus, addition of diethylzinc to racemic 2-phenylpropanal in the presence of (-)-(lS,2/ )-Ar,W-dibutylnorephedrine gave a 75 25 mixture of the diastereomeric alcohols syn-4 and anti-4 with 65% ee and 93% ee, respectively, and 60% total yield. In the case of the syn-diastereomer, the (2.S, 3S)-enantiomer predominated, whereas with the twtf-diastereomer, the (2f ,3S)-enantiomer was formed preferentially. [Pg.23]


See other pages where Kinetic racemic resolution is mentioned: [Pg.33]    [Pg.33]    [Pg.320]    [Pg.242]    [Pg.343]    [Pg.246]    [Pg.283]    [Pg.284]    [Pg.55]    [Pg.20]    [Pg.229]    [Pg.239]    [Pg.250]    [Pg.250]    [Pg.250]    [Pg.251]    [Pg.253]    [Pg.255]    [Pg.257]    [Pg.259]    [Pg.260]    [Pg.261]    [Pg.261]    [Pg.263]    [Pg.264]    [Pg.328]    [Pg.337]    [Pg.343]    [Pg.128]    [Pg.132]   
See also in sourсe #XX -- [ Pg.248 ]




SEARCH



Classical Kinetic Resolution of Racemic Alcohols

Classical kinetic resolution, racemic

Classical kinetic resolution, racemic alcohols

Dynamic Kinetic Resolution of Racemic Alcohols

Dynamic Kinetic Resolution of Racemic Amines

Dynamic Kinetic Resolution of Racemic Azlactones

Dynamic kinetic resolution of racemic ketones through asymmetric reduction

Dynamic) Kinetic Resolution of Racemic Compounds

Enzymatic kinetic resolution racemic amines

Kinetic Resolution of Racemic Alcohols

Kinetic Resolution of Racemic Allylic Alcohols

Kinetic Resolution of Racemic Amines

Kinetic resolution of racemic

Kinetic resolution of racemic epoxides

Kinetic resolution of racemic propylene

Kinetic resolution of racemic secondary

Kinetic resolution of racemic secondary alcohols

Kinetic resolution of racemic sulfoxide

Kinetic resolution racemic allylic alcohols

Kinetic resolution racemic ketones

Kinetic resolution racemic secondary amines

Natural product synthesis racemic alcohols, kinetic resolution

Racemate kinetic

Racemate resolution

Racemates resolution, dynamic kinetic

Racemic alcohols, kinetic resolution

Racemic amines kinetic resolution

Racemic compounds dynamic kinetic resolution

Racemic compounds kinetic resolution

Racemic dynamic kinetic resolution

Racemic epoxide kinetic resolution

Racemic hydrolytic kinetic resolution

Racemic resolution

Racemization kinetics

Racemization resolution

Ru-catalyzed hydrogenation of racemic 2-substituted aldehydes via dynamic kinetic resolution

© 2024 chempedia.info