Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic resolution of racemic

EinaHy, kinetic resolution of racemic olefins and aHenes can be achieved by hydroboration. The reaction of an olefin or aHene racemate with a deficient amount of an asymmetric hydroborating agent results in the preferential conversion of the more reactive enantiomer into the organoborane. The remaining unreacted substrate is enriched in the less reactive enantiomer. Optical purities in the range of 1—65% have been reported (471). [Pg.323]

Enzyme-Catalyzed Asymmetric Synthesis. The extent of kinetic resolution of racemates is determined by differences in the reaction rates for the two enantiomers. At the end of the reaction the faster reacting enantiomer is transformed, leaving the slower reacting enantiomer unchanged. It is apparent that the maximum product yield of any kinetic resolution caimot exceed 50%. [Pg.332]

The application of the AE reaction to kinetic resolution of racemic allylic alcohols has been extensively used for the preparation of enantiomerically enriched alcohols and allyl epoxides. Allylic alcohol 48 was obtained via kinetic resolution of the racemic secondary alcohol and utilized in the synthesis of rhozoxin D. Epoxy alcohol 49 was obtained via kinetic resolution of the enantioenriched secondary allylic alcohol (93% ee). The product epoxy alcohol was a key intermediate in the synthesis of (-)-mitralactonine. Allylic alcohol 50 was prepared via kinetic resolution of the secondary alcohol and the product utilized in the synthesis of (+)-manoalide. The mono-tosylated 3-butene-1,2-diol is a useful C4 building block and was obtained in 45% yield and in 95% ee via kinetic resolution of the racemic starting material. [Pg.59]

A noteworthy feature of the Sharpless Asymmetric Epoxidation (SAE) is that kinetic resolution of racemic mixtures of chiral secondary allylic alcohols can be achieved, because the chiral catalyst reacts much faster with one enantiomer than with the other. A mixture of resolved product and resolved starting material results which can usually be separated chromatographically. Unfortunately, for reasons that are not yet fully understood, the AD is much less effective at kinetic resolution than the SAE. [Pg.686]

The principle cost determinant in typical hydrolytic or phenolic resolutions is the cobalt catalyst, despite the relatively low catalyst loadings used in most cases and the demonstrated recyclability with key substrates. From this standpoint, recently developed oligomeric (salen)Co complexes, discussed earlier in this chapter in the context of the hydrolytic desymmetrization of meso-epoxides (Scheme 7.16), offer significant advantages for kinetic resolutions of racemic terminal epoxides (Table 7.3) [29-31]. For the hydrolytic and phenolic kinetic resolutions, the oligo-... [Pg.258]

One way of overcoming these problems is by kinetic resolution of racemic epoxides. Jacobsen has been very successful in applying chiral Co-salen catalysts, such as 21, in the kinetic resolution of terminal epoxides (Scheme 9.18) [83]. One enantiomer of the epoxide is converted into the corresponding diol, whereas the other enantiomer can be recovered intact, usually with excellent ee. The strategy works for a variety of epoxides, including vinylepoxides. The major limitation of this strategy is that the maximum theoretical yield is 50%. [Pg.328]

Scheme 9.20 Dynamic kinetic resolution of racemic epoxide... Scheme 9.20 Dynamic kinetic resolution of racemic epoxide...
Cu(i(-catalyzed kinetic resolutions of racemic, cyclic 1,3-diene monoepoxides through the use of dialkylzinc [123] or trialkylaluminium reagents [124] have re-... [Pg.336]

Since the addition of dialkylzinc reagents to aldehydes can be performed enantioselectively in the presence of a chiral amino alcohol catalyst, such as (-)-(1S,2/ )-Ar,A -dibutylnorephedrine (see Section 1.3.1.7.1.), this reaction is suitable for the kinetic resolution of racemic aldehydes127 and/or the enantioselective synthesis of optically active alcohols with two stereogenic centers starting from racemic aldehydes128 129. Thus, addition of diethylzinc to racemic 2-phenylpropanal in the presence of (-)-(lS,2/ )-Ar,W-dibutylnorephedrine gave a 75 25 mixture of the diastereomeric alcohols syn-4 and anti-4 with 65% ee and 93% ee, respectively, and 60% total yield. In the case of the syn-diastereomer, the (2.S, 3S)-enantiomer predominated, whereas with the twtf-diastereomer, the (2f ,3S)-enantiomer was formed preferentially. [Pg.23]

An efficient kinetic resolution of racemic secondary allyl carbamates was accomplished by the jw-butyllithium-(-)-sparteine complex76 131. Whereas the R-enantiomer (80% ee) is recovered unchanged, the 5-enantiomer is deprotonated preferentially. [Pg.237]

The plotting of Dixon plot and its slope re-plot (see 5.9.5.9) is a commonly used graphical method for verification of kinetics mechanisms in a particular enzymatic reaction.9 The proposed kinetic mechanism for the system is valid if the experimental data fit the rate equation given by (5.9.4.4). In this attempt, different sets of experimental data for kinetic resolution of racemic ibuprofen ester by immobilised lipase in EMR were fitted into the rate equation of (5.7.5.6). The Dixon plot is presented in Figure 5.22. [Pg.138]

A kinetic resolution of racemic sulphoxides was observed in the reduction by chiral polyiminoalanes. The efficiency of this process depends on the molecular structure of the polyiminoalane. With open pseudo-cubic tetra [JV-(l-phenylethyl)]imidoalane, unreacted sulphoxides were isolated in enantiomeric enrichment up to 75%. Optical purity was shown to increase with increasing the reaction temperature, a maximum enrichment being observed between 55 and 70 °C336. [Pg.297]

Finally, as an old example of kinetic resolution of racemic mixtures, mention must be made on the report of Kise and Tomiuchi on the significant effect of acetonitrile on the enantioselectivity of different proteases toward the kinetic resolution of aromatic amino acid ethyl esters (5-8). For instance, (l)-DOPA (8) was obtained with 99% ee in the presence of 90% v/v acetonitrile [9]. [Pg.6]

Table 1.5 I nfluence ofthe organic solvent on the enantioselectivity of the lipase PS (from Pseudomonas species) in the kinetic resolution of racemic trans-sobrerol (10). Table 1.5 I nfluence ofthe organic solvent on the enantioselectivity of the lipase PS (from Pseudomonas species) in the kinetic resolution of racemic trans-sobrerol (10).
Esterases have a catalytic function and mechanism similar to those of lipases, but some structural aspects and the nature of substrates differ [4]. One can expect that the lessons learned from the directed evolution of lipases also apply to esterases. However, few efforts have been made in the directed evolution of enantioselective esterases, although previous work by Arnold had shown that the activity of esterases as catalysts in the hydrolysis of achiral esters can be enhanced [49]. An example regarding enantioselectivity involves the hydrolytic kinetic resolution of racemic esters catalyzed by Pseudomonasfluorescens esterase (PFE) [50]. Using a mutator strain and by screening very small libraries, low improvement in enantioselectivity was... [Pg.38]

The phosphotriesterase from Pseudomonas diminuta was shown to catalyze the enantioselective hydrolysis of several racemic phosphates (21), the Sp isomer reacting faster than the Rp compound [65,66]. Further improvements using directed evolution were achieved by first carrying out a restricted alanine-scan [67] (i.e. at predetermined amino acid positions alanine was introduced). Whenever an effect on activity/ enantioselectivity was observed, the position was defined as a hot spot. Subsequently, randomization at several hot spots was performed, which led to the identification of several highly (S)- or (R)-selective mutants [66]. A similar procedure was applied to the generation of mutant phosphotriesterases as catalysts in the kinetic resolution of racemic phosphonates [68]. [Pg.45]

Orthoformates have been used in the lipase-catalyzed esterification aimed at the kinetic resolution of racemic acids such as flurbiprofen, a nonsteroidal anti-inflammatory drug (Figure 6.18). Orthoformates trap the water as it is formed through hydrolysis, and therefore prevent the reverse reaction, and, at the same time, provide the alcohol for the esteriflcation [65]. [Pg.141]

Dynamic kinetic resolution of racemic ketones proceeds through asymmetric reduction when the substrate does racemize and the product does not under the applied experimental conditions. Dynamic kinetic resolution of a-alkyl P-keto ester has been performed through enzymatic reduction. One isomer, out of the four possible products for the unselective reduction (Figure 8.38), can be selectively synthesized using biocatalyst, and by changing the biocatalyst or conditions, all of the isomers can be selectively synthesized [29]. [Pg.221]

The classical kinetic resolution of racemic substrate precursors allows only access to a theoretical 50% yield of the chiral ladone product, while the antipodal starting material remains unchanged in enantiomerically pure form. The regioseledivity for the enzymatic oxidation correlates to the chemical readion with preferred and exclusive migration of the more nucleophilic center (usually the higher substituted a-carbon). The majority of cydoketone converting BVMOs (in particular CHMOAdneto)... [Pg.248]

Scheme 9.21 Kinetic resolution of racemic cycloketones by BVMOs. Scheme 9.21 Kinetic resolution of racemic cycloketones by BVMOs.
Figure 10.26 Short enzymatic synthesis of L-fucose and hydrophobic analogs, and of L-rhamnose, by aldolization-ketol isomerization, including kinetic resolution of racemic hydroxyaldehyde precursors. Figure 10.26 Short enzymatic synthesis of L-fucose and hydrophobic analogs, and of L-rhamnose, by aldolization-ketol isomerization, including kinetic resolution of racemic hydroxyaldehyde precursors.
Kinetic resolution of racemic allylic acetates has been accomplished via asymmetric dihydroxylation (p. 1051), and 2-oxoimidazolidine-4-carboxy-lates have been developed as new chiral auxiliaries for the kinetic resolution of amines. Reactions catalyzed by enzymes can be utilized for this kind of resolution. ... [Pg.154]

The importance of proper immobilization of enzymes can be shown in the kinetic resolution of racemic a-acetoxyamides. This group of compounds is an important class of chemicals since they can be readily transformed into a-amino acids [17], N-methylated amino acids, and tripeptide mimetics [18], amino alcohols [19], 1,2-diols [20], 1,2-diamines [21], and enantiopure l,4-dihydro-4-phenyl isoquinolinones [22]. [Pg.100]


See other pages where Kinetic resolution of racemic is mentioned: [Pg.242]    [Pg.283]    [Pg.284]    [Pg.229]    [Pg.250]    [Pg.251]    [Pg.253]    [Pg.255]    [Pg.257]    [Pg.259]    [Pg.260]    [Pg.261]    [Pg.261]    [Pg.328]    [Pg.337]    [Pg.343]    [Pg.304]    [Pg.63]    [Pg.295]    [Pg.296]    [Pg.73]    [Pg.28]    [Pg.136]    [Pg.254]    [Pg.293]   


SEARCH



Classical Kinetic Resolution of Racemic Alcohols

Dynamic Kinetic Resolution of Racemic Alcohols

Dynamic Kinetic Resolution of Racemic Amines

Dynamic Kinetic Resolution of Racemic Azlactones

Dynamic kinetic resolution of racemic ketones through asymmetric reduction

Dynamic) Kinetic Resolution of Racemic Compounds

Kinetic Resolution of Racemic Alcohols

Kinetic Resolution of Racemic Allylic Alcohols

Kinetic Resolution of Racemic Amines

Kinetic resolution of racemic epoxides

Kinetic resolution of racemic propylene

Kinetic resolution of racemic secondary

Kinetic resolution of racemic secondary alcohols

Kinetic resolution of racemic sulfoxide

Racemate kinetic

Racemate resolution

Racemic kinetic resolutions

Racemic resolution

Racemization kinetics

Racemization resolution

Resolution of racemates

Ru-catalyzed hydrogenation of racemic 2-substituted aldehydes via dynamic kinetic resolution

© 2024 chempedia.info