Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics phenol

Hill GA, Robinson CW (1975) Substrate inhibition kinetics phenol degradation by pseudomonas putida. Biotechnol Bioeng 17 1599-1615... [Pg.132]

HiU G.A., Robinson C.W. 1975. Substrate inhibition kinetics Phenol degradation by Pseudomonas putida, Biotechnol. Bioeng., 17, 1599—1615. [Pg.197]

Organic sulfur compounds such as sulfurized spermaceti oil, terpene sulfides, and aromatic disulfides have been used. Encumbered phenols such as di-tertiary-butylphenols and amines of the phenyl-alphanaphthylamine type are effective stopping the kinetic oxidation chain by creating stable radicals. [Pg.358]

Other substituents which belong with this group have already been discussed. These include phenol, anisole and compounds related to it ( 5.3.4 the only kinetic data for anisole are for nitration at the encounter rate in sulphuric acid, and with acetyl nitrate in acetic anhydride see 2.5 and 5.3.3, respectively), and acetanilide ( 5.3.4). The cations PhSMe2+, PhSeMe2+, and PhaO+ have also been discussed ( 9.1.2). Amino groups are prevented from showing their character ( — 7 +717) in nitration because conditions enforce reaction through the protonated forms ( 9.1.2). [Pg.182]

On reaction with acyl chlorides and acid anhydrides phenols may undergo either acylation of the hydroxyl group (O acylation) or acylation of the ring (C acylation) The product of C acylation is more stable and predominates under conditions of thermodynamic control when alu mmum chloride is present (see entry 6 m Table 24 4 Section 24 8) O acylation is faster than C acylation and aryl esters are formed under conditions of kinetic control... [Pg.1017]

Radical Scavengers Hydrogen-donating antioxidants (AH), such as hindered phenols and secondary aromatic amines, inhibit oxidation by competing with the organic substrate (RH) for peroxy radicals. This shortens the kinetic chain length of the propagation reactions. [Pg.223]

The acid—base equiUbtia are fundamental to the kinetics of azo coupling and of practical significance for azo technology. Thus it is important that coupling reactions be carried out in a medium such that the acid—base equiUbtia of the diazo and coupling components favor as much as possible the diazonium ions and the phenolate ions or the free amine, respectively. [Pg.428]

There is no mention in these reviews of any industrial implementation of supercritical kinetics. Two areas of interest are wastewater treatment—for instance, removal of phenol—and reduction of coking on catalysts by keeping heavy oil decomposition products in solution. [Pg.2101]

In general, the reaction between a phenol and an aldehyde is classified as an electrophilic aromatic substitution, though some researchers have classed it as a nucleophilic substitution (Sn2) on aldehyde [84]. These mechanisms are probably indistinguishable on the basis of kinetics, though the charge-dispersed sp carbon structure of phenate does not fit our normal concept of a good nucleophile. In phenol-formaldehyde resins, the observed hydroxymethylation kinetics are second-order, first-order in phenol and first-order in formaldehyde. [Pg.883]

The study of PF polymerization is far more difficult than that of methylolation due to the increased complexity of the reactions, the intractability of the material, and a resulting lack of adequate analytical methods. When dealing with methylolation, we saw that every reactive ring position had its own reaction rate with formaldehyde that varied with the extent of prior reaction of the ring. Despite this rate sensitivity and complexity, all reactions kinetics were second-order overall, first-order in phenol reactive sites and first-order in formaldehyde. This is not the case with the condensation reactions. [Pg.907]

Scheme 10. Mechanislic possibililies for PF condensalion. Mechanism a involves an SN2-like attack of a phenolic ring on a methylol. This attack would be face-on. Such a mechanism is necessarily second-order. Mechanism b involves formation of a quinone methide intermediate and should be Hrst-order. The quinone methide should react with any nucleophile and should show ethers through both the phenolic and hydroxymethyl oxygens. Reaction c would not be likely in an alkaline solution and is probably illustrative of the mechanism for novolac condensation. The slow step should be formation of the benzyl carbocation. Therefore, this should be a first-order reaction also. Though carbocation formation responds to proton concentration, the effects of acidity will not usually be seen in the reaction kinetics in a given experiment because proton concentration will not vary. Scheme 10. Mechanislic possibililies for PF condensalion. Mechanism a involves an SN2-like attack of a phenolic ring on a methylol. This attack would be face-on. Such a mechanism is necessarily second-order. Mechanism b involves formation of a quinone methide intermediate and should be Hrst-order. The quinone methide should react with any nucleophile and should show ethers through both the phenolic and hydroxymethyl oxygens. Reaction c would not be likely in an alkaline solution and is probably illustrative of the mechanism for novolac condensation. The slow step should be formation of the benzyl carbocation. Therefore, this should be a first-order reaction also. Though carbocation formation responds to proton concentration, the effects of acidity will not usually be seen in the reaction kinetics in a given experiment because proton concentration will not vary.
Alkaline co-condensation to yield commercial resins and the products of reaction obtained thereof [93,94] as well as the kinetics of the co-condensation of mono methylol phenols and urea [104,105] have also been reported [17]. Model reactions in order to prove an urea-phenol-formaldehyde co-condensation (reaction of urea with methylolphenols) are described by Tomita and Hse [98,102, 106] and by Pizzi et al. [93,104] (Fig. 1). [Pg.1058]

The preference for O-acylation of phenols fflises because these reactions ffle kinetically controlled. O-acylation is faster than C-acylation. The C-acyl isomers are more stable, however, and it is known that aluminum chloride is a very effective catalyst for the conversion of fflyl esters to fflyl ketones. This isomerization is called the Fries rearrangement. [Pg.1006]

Nishioka and Fujita78) have also determined the Kd values fora- and (S-cyclodextrin complexes with p- and/or m-substituted phenyl acetates through kinetic investigations on the alkaline hydrolysis of the complexes. The Kd values obtained were analyzed in the same manner as those for cyclodextrin-phenol complexes to give the Kd(X) values (Table 5). The quantitative structure-activity relationships were formulated as Eqs. 30 to 32 ... [Pg.78]

Only the hydrophobic and steric terms were involved in these equations. There are a few differences between these equations and the corresponding equations for cyclo-dextrin-substituted phenol systems. However, it is not necessarily required that the mechanism for complexation between cyclodextrin and phenyl acetates be the same as that for cyclodextrin-phenol systems. The kinetically determined Kj values are concerned only with productive forms of inclusion complexes. The productive forms may be similar in structure to the tetrahedral intermediates of the reactions. To attain such geometry, the penetration of substituents of phenyl acetates into the cyclodextrin cavity must be shallow, compared with the cases of the corresponding phenol systems, so that the hydrogen bonding between the substituents of phenyl acetates and the C-6 hydroxyl groups of cyclodextrin may be impossible. [Pg.79]

The principle cost determinant in typical hydrolytic or phenolic resolutions is the cobalt catalyst, despite the relatively low catalyst loadings used in most cases and the demonstrated recyclability with key substrates. From this standpoint, recently developed oligomeric (salen)Co complexes, discussed earlier in this chapter in the context of the hydrolytic desymmetrization of meso-epoxides (Scheme 7.16), offer significant advantages for kinetic resolutions of racemic terminal epoxides (Table 7.3) [29-31]. For the hydrolytic and phenolic kinetic resolutions, the oligo-... [Pg.258]

The kinetics of hydrogenation of phenol has already been studied in the liquid phase on Raney nickel (18). Cyclohexanone was proved to be the reaction intermediate, and the kinetics of single reactions were determined, however, by a somewhat simplified method. The description of the kinetics of the hydrogenation of phenol in gaseous phase on a supported palladium catalyst (62) was obtained by simultaneously solving a set of rate equations for the complicated reaction schemes containing six to seven constants. The same catalyst was used for a kinetic study also in the liquid phase (62a). [Pg.32]

In our study we first investigated separately the kinetics of the hydrogenation of phenol and of the hydrogenation of cyclohexanone (7), and from twenty-six different equations, using statistical treatment of the data, we found the best equations for the initial reaction rates to be... [Pg.32]

From the results of this kinetic study and from the values of the adsorption coefficients listed in Table IX, it can be judged that both reactions of crotonaldehyde as well as the reaction of butyraldehyde proceed on identical sites of the catalytic surface. The hydrogenation of crotyl alcohol and its isomerization, which follow different kinetics, most likely proceed on other sites of the surface. From the form of the integral experimental dependences in Fig. 9 it may be assumed, for similar reasons as in the hy-drodemethylation of xylenes (p. 31) or in the hydrogenation of phenol, that the adsorption or desorption of the reaction components are most likely faster processes than surface reactions. [Pg.45]


See other pages where Kinetics phenol is mentioned: [Pg.121]    [Pg.241]    [Pg.493]    [Pg.295]    [Pg.404]    [Pg.405]    [Pg.300]    [Pg.163]    [Pg.79]    [Pg.2216]    [Pg.124]    [Pg.587]    [Pg.900]    [Pg.307]    [Pg.314]    [Pg.399]    [Pg.257]    [Pg.258]    [Pg.259]    [Pg.50]    [Pg.7]    [Pg.41]    [Pg.170]    [Pg.205]    [Pg.305]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



2,6-Disubstituted phenols, kinetic

Epoxide phenol reaction kinetics

Glass transition temperatures kinetics of phenol release

Kinetic phenol-formaldehyde intermediates

Kinetic studies phenol reactions

Kinetics of inhibition by phenols and amines

Kinetics of phenols

Kinetics phenol hydrogenation

Methylated phenols, kinetics

Phenol decomposition kinetic

Phenol kinetic modeling

Phenol-formaldehyde reaction kinetics

Studies on Phenols The Kinetic Isotope Effect

© 2024 chempedia.info