Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative analysis, absolute

During quantitative analysis, the masses of certain components and the composition of the sample are determined using peak areas and spectroscopic data. There are two approaches for quantitative analysis absolute and relative. [Pg.1653]

The relative error is the absolute error divided by the true value it is usually expressed in terms of percentage or in parts per thousand. The true or absolute value of a quantity cannot be established experimentally, so that the observed result must be compared with the most probable value. With pure substances the quantity will ultimately depend upon the relative atomic mass of the constituent elements. Determinations of the relative atomic mass have been made with the utmost care, and the accuracy obtained usually far exceeds that attained in ordinary quantitative analysis the analyst must accordingly accept their reliability. With natural or industrial products, we must accept provisionally the results obtained by analysts of repute using carefully tested methods. If several analysts determine the same constituent in the same sample by different methods, the most probable value, which is usually the average, can be deduced from their results. In both cases, the establishment of the most probable value involves the application of statistical methods and the concept of precision. [Pg.134]

It would appear that measurement of the integrated absorption coefficient should furnish an ideal method of quantitative analysis. In practice, however, the absolute measurement of the absorption coefficients of atomic spectral lines is extremely difficult. The natural line width of an atomic spectral line is about 10 5 nm, but owing to the influence of Doppler and pressure effects, the line is broadened to about 0.002 nm at flame temperatures of2000-3000 K. To measure the absorption coefficient of a line thus broadened would require a spectrometer with a resolving power of 500000. This difficulty was overcome by Walsh,41 who used a source of sharp emission lines with a much smaller half width than the absorption line, and the radiation frequency of which is centred on the absorption frequency. In this way, the absorption coefficient at the centre of the line, Kmax, may be measured. If the profile of the absorption line is assumed to be due only to Doppler broadening, then there is a relationship between Kmax and N0. Thus the only requirement of the spectrometer is that it shall be capable of isolating the required resonance line from all other lines emitted by the source. [Pg.782]

It is seen that there is not a great difference between the use of peak heights or peak areas for quantitative analysis, except possibly for very early peaks, where the results seem to indicate that peak height measurements might be more precise. However, it again must be emphasized that the measurements made by Scott and Reese were overall precision measurements that will include all variations in the chromatographic system. The difference between the two methods of measurement may well be significant, but the absolute values for precision will not, by any means, be solely dependent on the method of peak measurement. [Pg.273]

Solid samples can also be measured in transmission, although reflection or transflection measurements are more common. Open arrangements with the source on one side of the sample and the spectral analyser on the other side are prevalently used, e.g. in industrial process control. For absolute quantitative analysis the thickness of the object must either be constant or be measured. [Pg.130]

Peaks are identified from absolute or relative retention times by comparison with data from previously run standards stored in RAM or in libraries on disk. To take account of the variability of retention times from successive runs, retention time windows are used. These are defined as being /R x% for a standard, the unknown being positively identified if its retention time falls within the specified range. The size of the window can be varied by the user to conform with the degree of certainty required. Reference peaks can be selected for the calculation of relative retention times or as internal standards in quantitative analysis (pp. 9, 114). [Pg.541]

A plethora of chemical reactions that are intimately associated with the quantitative analysis essentially belong to the class of reversible reactions. These reactions under certain prevailing experimental parameters are made to proceed to completion, whereas in certain other conditions they may even attain equilibrium before completion. In the latter instance, erroneous results may creep in with regard to the pharmaceutical substance under estimation. Hence, it has become absolutely necessary first to establish the appropriate conditions whereby the reactions must move forward to attain completion so as to achieve the ultimate objective in all quantitative assays. [Pg.174]

Internal Standard for KBr-Disc Technique In quantitative analysis it is essential to examine absolutely uniform discs of identical weights. To achieve this, known weights of both KBr and analyte are required in the preparation of the KBr-disc and finally from the absorption data a calibration-curve may be obtained. In this process, it is a must to weigh the discs and also to measure their thickness at different points... [Pg.329]

The concept of power quality is a qualitative one for which mathematical expressions are not absolutely necessary to develop a basic understanding of the issues however, mathematical expressions are necessary to solve power quality problems. If we cannot effectively represent a power quality problem with expressions based in mathematics, then solutions to the problem become exercises in trial and error. The expressions are what define power quality boundaries, as discussed earlier. So far, we have stayed away from much of quantitative analysis of power quality for the purpose of first developing an understanding. In later chapters, formulas and expressions will be introduced to complete the picture. [Pg.34]

Quantitation Once protein expression profiling activities characterize qualitative features, the attention turns to delineating protein interactions and mechanistic pathways responsible for disease. These studies also require rapid sequence determination/confirmation combined with accurate and sensitive quantitative analysis. The quantitation approaches would allow for direct comparison of protein amounts (absolute or relative) from a variety of cellular states. Because of the reasons stated previously, quantitative applications are likely to be less dependent on 2-DGE and rely primarily on formats that involve specific purification and/or chromatographic separation with mass spectrometry. [Pg.76]

Since many of the fission products obtained have never been accurately described, the larger handbooks, such as Beilstein, are of little help. On the other hand, it is absolutely necessary to study the available patents carefully, and, if necessary, to perform quantitative,analysis on the products obtained, as pointed out in the introduction to this section. In this connection, reference should be made to the literature compilation given by Fierz and Matter (9, above). Note especially, Forster and Hanson, /. Soc. Dyers Colourists, 42, 272 (1926). [Pg.220]


See other pages where Quantitative analysis, absolute is mentioned: [Pg.161]    [Pg.738]    [Pg.161]    [Pg.738]    [Pg.148]    [Pg.855]    [Pg.131]    [Pg.145]    [Pg.290]    [Pg.208]    [Pg.260]    [Pg.301]    [Pg.528]    [Pg.81]    [Pg.55]    [Pg.87]    [Pg.162]    [Pg.333]    [Pg.334]    [Pg.743]    [Pg.163]    [Pg.83]    [Pg.279]    [Pg.39]    [Pg.115]    [Pg.168]    [Pg.43]    [Pg.162]    [Pg.232]    [Pg.473]    [Pg.186]    [Pg.873]    [Pg.192]    [Pg.162]    [Pg.281]    [Pg.165]    [Pg.254]    [Pg.76]    [Pg.199]    [Pg.187]   


SEARCH



Absolute quantification quantitative analysis)

Absolute quantitation

© 2024 chempedia.info