Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrrol electrochemical polymerization

Poly thiophene, PTP, and polypyrrole, PPR, blends with PS and PC were prepared by Wang et al. [1990] by thiophene or pyrrole electrochemical polymerization using electrodes coated with PS or PC hlms. The thiophene or pyrrole diffuses into the fihn and polymerizes in-situ in the film. Threshold conductivity occurs at 18 wt% for both conducting polymers in PS. Lower levels exist for PTP (12 wt%) and PPR (7 wt%) in PC. Miscibility of PPR/PC is attributed to the lower threshold limit as phase separated blends would be expected to have higher values. Previous studies with polyacetylene/PS blends reported threshold conductivity at 16 wt% polyacetylene [Aldissi and Bishop, 1985]. [Pg.1183]

After that, the use of oxalate salts was adopted, and in spite of a slight dissolution of the metal during the electropolymerization, very adherent (11.5 MPa adherence) and homogeneous films were obtained by Beck and Michaelis [14,15]. Some time later, the study was taken up again by Su and Iroh who studied the effects of various electrochemical process parameters on the synthesis and the properties of PPy electrodeposited on iron [89-90]. They confirmed that in acidic medium the pyrrole electrochemical polymerization takes place on the passivated electrode coated with crystalhne iron(ll) oxalate, and that PPy is deposited after the desorption of oxalate. As mentioned previously, the work of Shaftinghen, Deslouis et al. [91 ] showed that the protection properties of the material were dependent on the pyrrole electropolymerization conditions. [Pg.657]

Functionalized conducting monomers can be deposited on electrode surfaces aiming for covalent attachment or entrapment of sensor components. Electrically conductive polymers (qv), eg, polypyrrole, polyaniline [25233-30-17, and polythiophene/23 2JJ-J4-j5y, can be formed at the anode by electrochemical polymerization. For integration of bioselective compounds or redox polymers into conductive polymers, functionalization of conductive polymer films, whether before or after polymerization, is essential. In Figure 7, a schematic representation of an amperomethc biosensor where the enzyme is covalendy bound to a functionalized conductive polymer, eg, P-amino (polypyrrole) or poly[A/-(4-aminophenyl)-2,2 -dithienyl]pyrrole, is shown. Entrapment of ferrocene-modified GOD within polypyrrole is shown in Figure 7. [Pg.46]

In 1968 DairOlio et al. published the first report of analogous electrosyntheses in other systems. They had observed the formation of brittle, filmlike pyrrole black on a Pt-electrode during the anodic oxidation of pyrrole in dilute sulphuric acid. Conductivity measurements carried out on the isolated solid state materials gave a value of 8 Scm . In addition, a strong ESR signal was evidence of a high number of unpaired spins. Earlier, in 1961, H. Lund had reported — in a virtually unobtainable publication — that PPy can be produced by electrochemical polymerization. [Pg.3]

Pyrrole derivatives substituted in positions 1-, 3-, or 4- have also been electrochemically polymerized (positions 2- and 5- must be free for polymerization). Besides homopolymers, copolymers can also be prepared in this way. Other nitrogen heterocycles that have been polymerized by anodic oxidation include carbazole, pyridazine, indole, and their various substitution derivatives. [Pg.338]

The polypyrrole molecular interface has been electrochemically synthesized between the self-assembled protein molecules and the electrode surface for facilitating the enzyme with electron transfer to the electrode. Figure 9 illustrates the schematic procedure of the electrochemical preparation of the polypyrrole molecular interface. The electrode-bound protein monolayer is transferred in an electrolyte solution containing pyrrole. The electrode potential is controlled at a potential with a potentiostat to initiate the oxidative polymerization of pyrrole. The electrochemical polymerization should be interrupted before the protein monolayer is fully covered by the polypyrrole layer. A postulated electron transfer through the polypyrrole molecular interface is schematically presented in Fig. 10. [Pg.341]

Fig.9 Electrochemical polymerization of pyrrole on the electrode-bound redox enzyme oxidase... Fig.9 Electrochemical polymerization of pyrrole on the electrode-bound redox enzyme oxidase...
A platinum disk electrode was electrolytically platinized in a platinum chloride solution to increase the surface area and enhance the adsorption power. The platinized platinum electrode was then immersed in a solution containing 10 mg ml l ADH. 0.75 mM and 6.2 mM NAD. After sufficient adsorption of these molecules on the electrode surface, the electrode was transferred into a solution containing 0.1 M pyrrole and 1 M KC1. Electrochemical polymerization of pyrrole was conducted at +0.7 V vs. Ag/AgCl. The electrolysis was stopped at a total charge of 1 C cm 2. An enzyme-entrapped polypyrrole membrane was deposited on the electrode surface. [Pg.352]

Aromatic molecules can be polymerized catalytically on clean metal surfaces, or electrochemically to produce oriented polymer films. Initial adsorption of aromatic molecules occurs by electron donation from the aromatic molecule to the surface. This electron donation creates radical cations that can polymerize. Molecular orientation in the films depends on the stable bonding configuration of the radical cation. Thiophene, pyridines, and pyrrole all polymerize with the ring substantially perpendicular to the surface, whereas aniline polymerizes with the phenyl rings parallel to the surface. The catalytically... [Pg.97]

Although much less so than pyrrole polymers, indole polymers are beginning to be synthesized and studied as new materials. Electropolymerized films of indole-5-carboxylic acid are well-suited for the fabrication of micro pH sensors and they have been used to measure ascorbate and NADH levels. The three novel pyrroloindoles shown have been electrochemically polymerized, and the polymeric pyrrolocarbazole has similar physical properties to polyaniline. [Pg.75]

Electrochemical polymerization of heterocycles is useful in the preparation of conducting composite materials. One technique employed involves the electro-polymerization of pyrrole into a swollen polymer previously deposited on the electrode surface (148—153). This method allows variation of the physical properties of the material by control of the amount of conducting polymer incorporated into the matrix film. If the matrix polymer is an ionomer such as Nafion (154—158) it contributes the dopant ion for the oxidized conducting polymer and acts as an effective medium for ion transport during electrochemical switching of the material. [Pg.39]

Thiophene, pyrrole and their derivatives, in contrast to benzene, are easily oxidized electrochemically in common solvents and this has been a favourite route for their polymerization, because it allows in situ formation of thin films on electrode surfaces. Structure control in electrochemical polymerization is limited and the method is not well suited for preparing substantial amounts of polymer, so that there has been interest in chemical routes as an alternative. Most of the methods described above for synthesis of poly(p-phenylene) have been applied to synthesise polypyrrole and polythiophene, with varying success. [Pg.14]

The electrochemical polymerization of thiophene is apparently rather similar to that of pyrrole and studies have been reported by Tourillon and Gamier133) and by Kaneto et al.134,135). Early studies are reviewed by Tourillon136). The oxidation potential of the monomer is significantly higher (1.6 V v SCE) than that of pyrrole and it might be expected that the more reactive cations would lead to greater structural irregularity in the polymer, which appears to be the case. [Pg.20]

Electrochemical polymerization of phenols to non-conducting poly(phenylene ethers) has been described 112) and Oyama et al. recently claimed that phenol 191) and p,p -biphenol192) can be polymerized to uncharacterized conducting films. Kumar et al.193) claimed that it is possible to copolymerize phenol with pyrrole... [Pg.23]

The electrochemical polymerization of pyrrole or thiophene readily lends itself to formation of composites. Polypyrrole-acetylene laminates have been made by using polyacetylene as an electrode 295). The polypyrrole forms as a 5 pm skin on the polyacetylene. If the polyacetylene is first doped, the polypyrrole completely permeates the film. In both cases the conductivity of the composite reached 30-40 S cm-1 and was much less sensitive than that of pure polyacetylene to exposure to moist air or water, so that the polypyrrole protects the polyacetylene even in the case where it permeates the film. In this latter case, treatment with ammonia caused the conductivity to drop by 30 x whereas for the sandwich films the conductivity dropped by 4600 x through the film but only 17 x in the surface layers. [Pg.34]

By electropolymerization of pyrrole in solvents containing polyelectrolytes such as potassium polyvinylsulfate, it is possible to prepare films of polypyrrole with polymeric counterions which have good conductivity (1-10 S cm-1) and strength (49 MPa) 303 304,305). Such a material could be used reversibly to absorb cations in an ion exchange system. Pyrrole has also been electrochemically polymerized in microporous polytetrafluoroethylene membranes (Gore-tex), impregnated with a perfluorosulphonate ionomer 3061. [Pg.35]

Comparable to thiophene, pyrrole is a five-membered heterocycle, yet the ring nitrogen results in a molecule with distinctly different behavior and a far greater tendency to polymerize oxidatively. The first report of the synthesis of polypyrrole (PPy) 62 that alluded to its electrically conductive nature was published in 1968 [263]. This early material was obtained via electrochemical polymerization and was carried out in 0.1 N sulfuric acid to produce a black film. Since then, a number of improvements, which have resulted from in-depth solvent and electrolyte studies, have made the electrochemical synthesis of PPy the most widely employed method [264-266]. The properties of electrosynthesized PPy are quite sensitive to the electrochemical environment in which it is obtained. The use of various electrolytes yield materials with pronounced differences in conductivity, film morphology, and overall performance [267-270]. Furthermore, the water solubility of pyrrole allows aqueous electrochemistry [271], which is of prime importance for biological applications [272]. [Pg.104]

Polypyrrole thin film doped with glucose oxidase (PPy-GOD) has been prepared on a glassy carbon electrode by the electrochemical polymerization of the pyrrole monomer in the solution of glucose oxidase enzyme in the absence of other supporting electrolytes. The cyclic voltammetry of the PPy-GOD film electrode shows electrochemical activity which is mainly due to the redox reaction of the PPy in the film. Both in situ Raman and in situ UV-visible spectroscopic results also show the formation of the PPy film, which can be oxidized and reduced by the application of the redox potential. A good catalytic response to the glucose and an electrochemical selectivity to some hydrophilic pharmaceutical drugs are seen at the PPy-GOD film electrode. [Pg.139]

Apparatus and materials. All electrochemical polymerizations, amperometric measurements and cyclic voltammetry were carried out with an EG G Princeton Applied Research Potentiostat model 273. Pyrrole was purified by vacuum distillation and by passage over neutral alumina prior to electropolymerization. The polyanions (1) used as dopants are shown in Figure 1, and were purified twice by precipitation from methanol in 0.1 M HC1. Detailed information about their synthesis and catalytic... [Pg.170]

The discovery that doped forms of polypyrroles conduct electrical current has spurred a great deal of synthetic activity related to polypyrroles [216-218], Reviews are available on various aspects of the synthesis and properties of polypyrroles [219,220]. In addition, summaries of important aspects of polypyrroles are included in several reviews on electrically conducting polymers [221-226]. Polypyrrole has been synthesized by chemical polymerization in solution [227-231], chemical vapor deposition (CVD) [232,233], and electrochemical polymerization [234-240]. The polymer structure consists primarily of units derived from the coupling of the pyrrole monomer at the 2,5-positions [Eq. (84)]. However, up to a third of the pyrrole rings in electrochemically prepared polypyrrole are not coupled in this manner [241]. [Pg.639]

Recent development in multilayer sensor architecture using sequential electrochemical polymerization of pyrrole and pyrrole derivatives to entrap enzymes was tested on a tyrosinase-based phenol sensor [127]. A phenothia-zine dye, thionine served as redox mediator and was covalently attached to the thin, functionalized first polypyrrole layer on Platinum disk electrodes. Then, a second layer of polypyrrole with entrapped tyrosinase was electrochemically deposited. The phenol sensor constructed in this manner effectively transferred electron from enz3Tne to the electrode surface. As all steps in preparation, including deposition of the enzyme-containing layer are carried out electrochemically, this technique may prove to be applicable for mass production of miniature sensors. [Pg.362]


See other pages where Pyrrol electrochemical polymerization is mentioned: [Pg.36]    [Pg.37]    [Pg.39]    [Pg.332]    [Pg.338]    [Pg.338]    [Pg.410]    [Pg.111]    [Pg.332]    [Pg.148]    [Pg.20]    [Pg.36]    [Pg.37]    [Pg.39]    [Pg.18]    [Pg.63]    [Pg.260]    [Pg.140]    [Pg.152]    [Pg.169]    [Pg.178]    [Pg.114]    [Pg.205]    [Pg.205]    [Pg.502]    [Pg.354]    [Pg.355]    [Pg.566]    [Pg.49]   
See also in sourсe #XX -- [ Pg.390 ]




SEARCH



Electrochemical polymerization

Polymerization pyrrole

Pyrrole electrochemical polymerization

Pyrrole electrochemical polymerization

Pyrroles polymerization

© 2024 chempedia.info