Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrolysis formation

Fig. 2J. Side products of pyrolysis. Formation of aromatic hydrocarbons and coke. Fig. 2J. Side products of pyrolysis. Formation of aromatic hydrocarbons and coke.
The first diradical intermediate is the same as that involved in the photolysis and thermolysis of thietane l,l-dioxides ° and interconversion of the y-sultine and thietane dioxide often accompanies cyclopropane formation. In flash-vacuum pyrolysis, formation of the alkene may compete with the desired cyclopropane-forming reaction. Examples of this reaction are summarized in Table 11. [Pg.1123]

Electron-deficient alkenes add stereospecifically to 4-hydroxy-THISs with formation of endo-cycloadducts. Only with methylvinyl-ketone considerable amounts of the exo isomer are produced (Scheme 8) (16). The adducts (6) may extrude hydrogen sulfide on heating with methoxide producing 2-pyridones. The base is unnecessary with fumaronitrile adducts. The alternative elimination of isocyanate Or sulfur may be controlled using 7 as the dipolarenOphile. The cycloaddition produces two products, 8a (R = H, R = COOMe) and 8b (R = COOMe, R =H) (Scheme 9) (17). Pyrolysis of 8b leads to extrusion of furan and isocyanate to give a thiophene. The alternative S-elimi-nation can be effected by oxidation of the adduct and subsequent pyrolysis. [Pg.5]

On the other hand, with 4,5-thiazoledicarboxylic acid the 5-carboxyl group is the more labile (3, 5, 51) contrary to results found by other workers (52). For example. Huntress et al. (5) have shown that pyrolysis of 2-phenyl-4,5-thiazoledicarboxylic acid (7) gives evolution of carbon dioxide and the formation of 2-phenyl-4-thiazolecarboxylic acid (8i (Scheme 5). [Pg.523]

Manufacture. For the commercial production of DPXN (di-/)-xylylene) (3), two principal synthetic routes have been used the direct pyrolysis of -xylene (4, X = Y = H) and the 1,6-Hofmaim elimination of ammonium (HNR3 ) from a quaternary ammonium hydroxide (4, X = H, Y = NR3 ). Most of the routes to DPX share a common strategy PX is generated at a controlled rate in a dilute medium, so that its conversion to dimer is favored over the conversion to polymer. The polymer by-product is of no value because it can neither be recycled nor processed into a commercially useful form. Its formation is minimised by careful attention to process engineering. The chemistry of the direct pyrolysis route is shown in equation 1 ... [Pg.430]

With aldehydes, primary alcohols readily form acetals, RCH(OR )2. Acetone also forms acetals (often called ketals), (CH2)2C(OR)2, in an exothermic reaction, but the equiUbrium concentration is small at ambient temperature. However, the methyl acetal of acetone, 2,2-dimethoxypropane [77-76-9] was once made commercially by reaction with methanol at low temperature for use as a gasoline additive (5). Isopropenyl methyl ether [116-11-OJ, useful as a hydroxyl blocking agent in urethane and epoxy polymer chemistry (6), is obtained in good yield by thermal pyrolysis of 2,2-dimethoxypropane. With other primary, secondary, and tertiary alcohols, the equiUbrium is progressively less favorable to the formation of ketals, in that order. However, acetals of acetone with other primary and secondary alcohols, and of other ketones, can be made from 2,2-dimethoxypropane by transacetalation procedures (7,8). Because they hydroly2e extensively, ketals of primary and especially secondary alcohols are effective water scavengers. [Pg.94]

Pyrolysis of chlorodifluoromethane is a noncatalytic gas-phase reaction carried out in a flow reactor at atmospheric or sub atmospheric pressure yields can be as high as 95% at 590—900°C. The economics of monomer production is highly dependent on the yields of this process. A significant amount of hydrogen chloride waste product is generated during the formation of the carbon—fluorine bonds. [Pg.348]

Step 4 of the thermal treatment process (see Fig. 2) involves desorption, pyrolysis, and char formation. Much Hterature exists on the pyrolysis of coal (qv) and on different pyrolysis models for coal. These models are useful starting points for describing pyrolysis in kilns. For example, the devolatilization of coal is frequently modeled as competing chemical reactions (24). Another approach for modeling devolatilization uses a set of independent, first-order parallel reactions represented by a Gaussian distribution of activation energies (25). [Pg.51]

Primary nitroparaffins react with two moles of formaldehyde and two moles of amines to yield 2-nitro-l,3-propanediamines. With excess formaldehyde, Mannich bases from primary nitroparaffins and primary amines can react further to give nitro-substituted cycHc derivatives, such as tetrahydro-l,3-oxa2iaes or hexahydropyrimidines (38,39). Pyrolysis of salts of Mannich bases, particularly of the boron trifluoride complex (40), yields nitro olefins by loss of the amine moiety. Closely related to the Mannich reaction is the formation of sodium 2-nitrobutane-1-sulfonate [76794-27-9] by warming 1-nitropropane with formaldehyde and sodium sulfite (41). [Pg.100]

Chlorinated by-products of ethylene oxychlorination typically include 1,1,2-trichloroethane chloral [75-87-6] (trichloroacetaldehyde) trichloroethylene [7901-6]-, 1,1-dichloroethane cis- and /n j -l,2-dichloroethylenes [156-59-2 and 156-60-5]-, 1,1-dichloroethylene [75-35-4] (vinyhdene chloride) 2-chloroethanol [107-07-3]-, ethyl chloride vinyl chloride mono-, di-, tri-, and tetrachloromethanes (methyl chloride [74-87-3], methylene chloride [75-09-2], chloroform, and carbon tetrachloride [56-23-5])-, and higher boiling compounds. The production of these compounds should be minimized to lower raw material costs, lessen the task of EDC purification, prevent fouling in the pyrolysis reactor, and minimize by-product handling and disposal. Of particular concern is chloral, because it polymerizes in the presence of strong acids. Chloral must be removed to prevent the formation of soflds which can foul and clog operating lines and controls (78). [Pg.418]

By-products from EDC pyrolysis typically include acetjiene, ethylene, methyl chloride, ethyl chloride, 1,3-butadiene, vinylacetylene, benzene, chloroprene, vinyUdene chloride, 1,1-dichloroethane, chloroform, carbon tetrachloride, 1,1,1-trichloroethane [71-55-6] and other chlorinated hydrocarbons (78). Most of these impurities remain with the unconverted EDC, and are subsequendy removed in EDC purification as light and heavy ends. The lightest compounds, ethylene and acetylene, are taken off with the HCl and end up in the oxychlorination reactor feed. The acetylene can be selectively hydrogenated to ethylene. The compounds that have boiling points near that of vinyl chloride, ie, methyl chloride and 1,3-butadiene, will codistiU with the vinyl chloride product. Chlorine or carbon tetrachloride addition to the pyrolysis reactor feed has been used to suppress methyl chloride formation, whereas 1,3-butadiene, which interferes with PVC polymerization, can be removed by treatment with chlorine or HCl, or by selective hydrogenation. [Pg.419]

Iminoboianes have been suggested as intermediates in the formation of compounds derived from the pyrolysis of azidoboranes (77). The intermediate is presumed to be a boryl-substituted nitrene, RR BN, which then rearranges to the amino iminoborane, neither of which has been isolated (78). Another approach to the synthesis of amino iminoboranes involves the dehydrohalogenation of mono- and bis(amino)halobotanes as shown in equation 21. Bulky alkah-metal amides, MNR, have been utilized successfully as the strong base,, in such a reaction scheme. Use of hthium-/i /f-butyl(ttimethylsilyl)amide yields an amine, DH, which is relatively volatile (76,79). [Pg.264]

Reactions of the carboxyl group include salt and acid chloride formation, esterification, pyrolysis, reduction, and amide, nitrile, and amine formation. Salt formation occurs when the carboxyUc acid reacts with an alkaline substance (22)... [Pg.84]

Reaction Conditions. Typical iadustrial practice of this reaction involves mixing vapor-phase propylene and vapor-phase chlorine in a static mixer, foEowed immediately by passing the admixed reactants into a reactor vessel that operates at 69—240 kPa (10—35 psig) and permits virtual complete chlorine conversion, which requires 1—4 s residence time. The overaE reactions are aE highly exothermic and as the reaction proceeds, usuaEy adiabaticaEy, the temperature rises. OptimaEy, the reaction temperature should not exceed 510°C since, above this temperature, pyrolysis of the chlorinated hydrocarbons results in decreased yield and excessive coke formation (27). [Pg.33]

Combustion chemistry in diffusion flames is not as simple as is assumed in most theoretical models. Evidence obtained by adsorption and emission spectroscopy (37) and by sampling (38) shows that hydrocarbon fuels undergo appreciable pyrolysis in the fuel jet before oxidation occurs. Eurther evidence for the existence of pyrolysis is provided by sampling of diffusion flames (39). In general, the preflame pyrolysis reactions may not be very important in terms of the gross features of the flame, particularly flame height, but they may account for the formation of carbon while the presence of OH radicals may provide a path for NO formation, particularly on the oxidant side of the flame (39). [Pg.519]

Soot. Emitted smoke from clean (ash-free) fuels consists of unoxidized and aggregated particles of soot, sometimes referred to as carbon though it is actually a hydrocarbon. Typically, the particles are of submicrometer size and are initially formed by pyrolysis or partial oxidation of hydrocarbons in very rich but hot regions of hydrocarbon flames conditions that cause smoke will usually also tend to produce unbumed hydrocarbons with thek potential contribution to smog formation. Both maybe objectionable, though for different reasons, at concentrations equivalent to only 0.01—0.1% of the initial fuel. Although thek effect on combustion efficiency would be negligible at these levels, it is nevertheless important to reduce such emissions. [Pg.530]

By-product formation can also be reduced by use of a stripping gas or vacuum to faciUtate removal of ammonia (88) however, sublimation of urea becomes excessive if the pressure is too low. Addition of ammonium salts (eg, CU, NO7, or ) (89—91), acids, or pyrolysis of preformed urea salts, eg,... [Pg.420]

Operabihty (ie, pellet formation and avoidance of agglomeration and adhesion) during kiln pyrolysis of urea can be improved by low heat rates and peripheral speeds (105), sufficiently high wall temperatures (105,106), radiant heating (107), multiple urea injection ports (106), use of heat transfer fluids (106), recycling 60—90% of the cmde CA to the urea feed to the kilns (105), and prior formation of urea cyanurate (108). [Pg.421]

Flash vacuum pyrolysis of 2-methoxycarbonylpyrrole (11) gives the ketene (12), characterized by IR absorption at 2110 cm. On warming to -100 to -90 °C the dimer (13) is formed (82CC360). Flash vacuum pyrolysis of indole-2-carboxylic acid (14) results in loss of water and the formation of a ketene (15) showing absorption at 2106 cm (82CC360). [Pg.41]

The use of free-radical reactions for this mode of ring formation has received rather more attention. The preparation of benzo[Z)]thiophenes by pyrolysis of styryl sulfoxides or styryl sulfides undoubtedly proceeds via formation of styrylthiyl radicals and their subsequent intramolecular substitution (Scheme 18a) (75CC704). An analogous example involving an amino radical is provided by the conversion of iV-chloro-iV-methylphenylethylamine to iV-methylindoline on treatment with iron(II) sulfate in concentrated sulfuric acid (Scheme 18b)(66TL2531). [Pg.100]


See other pages where Pyrolysis formation is mentioned: [Pg.645]    [Pg.645]    [Pg.527]    [Pg.232]    [Pg.76]    [Pg.240]    [Pg.456]    [Pg.382]    [Pg.388]    [Pg.108]    [Pg.258]    [Pg.202]    [Pg.415]    [Pg.419]    [Pg.422]    [Pg.422]    [Pg.339]    [Pg.395]    [Pg.85]    [Pg.227]    [Pg.227]    [Pg.245]    [Pg.280]    [Pg.420]    [Pg.420]    [Pg.420]    [Pg.421]    [Pg.421]    [Pg.440]    [Pg.41]    [Pg.100]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.6 ]




SEARCH



Alkenes by pyrolysis of formate

Benzene pyrolysis surface carbon formation, mechanism

Bond surface formate pyrolysis

Butyl formate, pyrolysis

Coke formation, pyrolysis

Ethyl formate, pyrolysis

Formate esters, pyrolysis

Hydrocarbon species, formation pyrolysis reactions

Propyl formate, pyrolysis

Pyrolysis coke formation during

Pyrolysis of amino acids compared to ion fragments formation

Pyrolysis of lignin models compared to ion fragments formation

Pyrolysis of saccharides compared to ion fragments formation

Pyrolysis silicide formation

Pyrolysis, biomass char formation

Pyrolysis, water formation

Radical formation pyrolysis

© 2024 chempedia.info