Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridoxal phosphate methionine

The amino acid methionine is biosynthesized by a multistep roule that includes reaction of an inline of pyridoxal phosphate (PLP) to give an unsaturated imine. which then reacts with cysteine. What kinds of reactions are occurring in the two steps ... [Pg.743]

This pyridoxal phosphate-requiring enzyme has been studied in several bacteria and X-ray crystal structures are available.35 The coryneform bacterium, Brevi-bacterium linens, is common on the surface of several cheeses, including Limburger and those of the Trappist type. The methionine y-lyase of this organism has been purified to homogeneity36 and the relevant gene, mgl (from MGL, abbreviation for methionine y-lyase) has been cloned and analyzed.37... [Pg.681]

Homocystinuria can be treated in some cases by the administration of pyridoxine (vitamin Bs), which is a cofactor for the cystathionine synthase reaction. Some patients respond to the administration of pharmacological doses of pyridoxine (25-100 mg daily) with a reduction of plasma homocysteine and methionine. Pyridoxine responsiveness appears to be hereditary, with sibs tending to show a concordant pattern and a milder clinical syndrome. Pyridoxine sensitivity can be documented by enzyme assay in skin fibroblasts. The precise biochemical mechanism of the pyridoxine effect is not well understood but it may not reflect a mutation resulting in diminished affinity of the enzyme for cofactor, because even high concentrations of pyridoxal phosphate do not restore mutant enzyme activity to a control level. [Pg.676]

This enzyme [EC 2.6.1.57] catalyzes the reversible reaction of an aromatic amino acid with a-ketoglutarate to generate an aromatic oxo acid and glutamate. Pyridoxal phosphate is a required cofactor. Methionine can also act as a weak substrate, substituting for the aromatic amino acid. Oxaloacetate substitutes for a-ketoglutarate. [Pg.64]

This pyridoxal-phosphate-dependent enzyme [EC 4.4.1.11], also known as L-methioninase, catalyzes the conversion of L-methionine to methanethiol, ammonia, and a-ketobutyrate (or, 2-oxobutanoate). [Pg.459]

This pyridoxal-phosphate-dependent enzyme [EC 4.2.99.9], also known as cystathionine y-synthase, catalyzes the reaction of O-succinyl-L-homoserine with L-cysteine to produce cystathionine and succinate. The enzyme can also use hydrogen sulfide and methanethiol as substrates, producing homocysteine and methionine, respectively. In the absence of a thiol, the enzyme can also catalyze a /3,y-elimination reaction to form 2-oxobu-tanoate, succinate, and ammonia. [Pg.665]

A reduction and activation of HjOj by other one-electron donors, like semiquinones, has also to be considered. This follows from a study of the ethylene production from methionine in the presence of pyridoxal phosphate, a reaction characteristic for OH radicals or for Fenton-type oxidants. The ethylene production in the presence of dioxygen, anthraquinone-2-sulfonate, and an NADPH-generating system in phosphate buffer pH 7.6 was inhibited by SOD and by catalase, but stimulated by scavengers of OH radicals, like 0.1 mM mannitol, a-tocopherol, and formiate... [Pg.6]

The subsequent cleavage of cystathionine to yield cysteine, a-ketobutyrate and NH4+ is catalyzed by y-cystathionase, a pyridoxal-phosphate-containing enzyme. This transsulfura-tion pathway is one of the routes used for methionine catabolism. [Pg.497]

Fig. 1. Ethylene biosynthesis. The numbered enzymes are (1) methionine adenosyltransferase, (2) ACC (l-aminocyclopropane-l-carboxylic acid) synthase, (3) ethylene forming enzyme (EFE), (4) 5 -methylthio-adenosine nucleosidase, (5) 5 -methylthioribose kinase. Regulation of the synthesis of ACC synthase and EFE are important steps in the control of ethylene production. ACC synthase requires pyridoxal phosphate and is inhibited by aminoethoxy vinyl glycine EFE requires 02 and is inhibited under anaerobic conditions. Synthesis of both ACC synthase and EFE is stimulated during ripening, senescence, abscission, following mechanical wounding, and treatment with auxins. Fig. 1. Ethylene biosynthesis. The numbered enzymes are (1) methionine adenosyltransferase, (2) ACC (l-aminocyclopropane-l-carboxylic acid) synthase, (3) ethylene forming enzyme (EFE), (4) 5 -methylthio-adenosine nucleosidase, (5) 5 -methylthioribose kinase. Regulation of the synthesis of ACC synthase and EFE are important steps in the control of ethylene production. ACC synthase requires pyridoxal phosphate and is inhibited by aminoethoxy vinyl glycine EFE requires 02 and is inhibited under anaerobic conditions. Synthesis of both ACC synthase and EFE is stimulated during ripening, senescence, abscission, following mechanical wounding, and treatment with auxins.
The enzyme resembled methionine 7-lyase in requiring pyridoxal phosphate for activity but it did not attack methionine. The engine was described as an S-alkylcysteinase because it used a range of S-alkylcysteines and S-alkylcysteinesulfoxides as substrates. Similar rates of attack were obtained with methylated and ethylated substrates whereas with propyl, butyl, isobutyl, allyl, amyl and isoamyl derivatives of cysteine the rates were between 40% and 75% lower. [Pg.211]

The transsulfuration pathway involves conversion of homocysteine to cysteine by the sequential action of two pyridoxal phosphate (vitamin B6)-dependent enzymes, cystathionine- 5-synthase (CBS) and cystathionine y-lyase (Fig. 21-2). Transsulfuration of homocysteine occurs predominantly in the liver, kidney, and gastrointestinal tract. Deficiency of CBS, first described by Carson and Neill in 1962, is inherited in an autosomal recessive pattern. It causes homocystinuria accompanied by severe elevations in blood homocysteine (>100 (iM) and methionine (>60 (iM). Homocystinuria due to deficiency of CBS occurs at a frequency of about 1 in 300,000 worldwide but is more common in some populations such as Ireland, where the frequency is 1 in 65,000. Clinical features include blood clots, heart disease, skeletal deformities, mental retardation, abnormalities of the ocular lens, and fatty infiltration of the fiver. Several different genetic defects in the CBS gene have been found to account for loss of CBS activity. [Pg.227]

Figure 21-1. Structural and metabolic relationships between methionine, homocysteine, and cysteine. CBS, cystathionine b-synthase CTH, cystathionine y-lyase MAT, methionine adenosyltransferase MS, methionine synthase 5-MTHF, 5-methyltetrahydrofoIate MTs, methyl transferases PLR pyridoxal phosphate SAH, S-adenosylhomocysteine SAHH, SAH hydrolase THF, tetrahydrofolate. Figure 21-1. Structural and metabolic relationships between methionine, homocysteine, and cysteine. CBS, cystathionine b-synthase CTH, cystathionine y-lyase MAT, methionine adenosyltransferase MS, methionine synthase 5-MTHF, 5-methyltetrahydrofoIate MTs, methyl transferases PLR pyridoxal phosphate SAH, S-adenosylhomocysteine SAHH, SAH hydrolase THF, tetrahydrofolate.
Cystathionine /3-synthetase contains heme as well as pyridoxal phosphate, but this seems to have a regulatory rather than catalytic role the yeast enzyme does not contain heme (Jhee et al., 2000 Kabil et al., 2001). A common genetic polymorphism in human cystathionine /S-synthetase (a 68-base-pair insertion, occurring in about 12% of the general population) is associated with a lower than normal increase in plasma homocysteine after a methionine load in patients with low vitamin Be status, suggesting that the variant enzyme may have higher affinity for its cofactor than the normal form - the reverse of the position in the vitamin Bg responsive genetic diseases discussed in Section 9.4.3 (Tsaietal., 1999). [Pg.244]

In vitamin Be-deflcient experimental animals, there are skin lesions (e.g., acrodynia in the rat) and fissures or ulceration at the corners of the mouth and over the tongue, as well as a number of endocrine abnormalities defects in the metabolism of tryptophan (Section 9.5.4), methionine (Section 9.5.5), and other amino acids hypochromic microcytic anemia (the first step of heme biosynthesis is pyridoxal phosphate dependent) changes in leukocyte count and activity a tendency to epileptiform convulsions and peripheral nervous system damage resulting in ataxia and sensory neuropathy. There is also impairment of immune responses, as a result of reduced activity of serine hydroxymethyltransferase and hence reduced availability of one-carbon substituted folate for nucleic acid synthesis (Section 10.3.3). It has been suggested... [Pg.246]

As shown in Table 9.5, there are a number of indices of vitamin Be status available plasma concentrations of the vitamin, urinary excretion of 4-pyridoxic acid, activation of erythrocyte aminotransferases by pyridoxal phosphate added in vitro, and the ability to metabolize test doses of tryptophan and methionine. None is wholly satisfactory and where more than one index has been used in population studies, there is poor agreement between the different methods (Bender, 1989b Bates et al., 1999a). [Pg.250]

Early studies of vitamin Be requirements used the development of abnormalities of tryptophan or methionine metabolism during depletion, and normalization during repletion with graded intakes of the vitamin. Although tryptophan and methionine load tests are unreliable as indices of vitamin Be status in epidemiological studies (Section 9.5.4 and Section 9.5.5), under the controlled conditions of depletion/repletion studies they do give a useful indication of the state of vitamin Be nutrition. More recent studies have used more sensitive indices of status, including the plasma concentration of pyridoxal phosphate, urinary excretion of 4-pyridoxic acid, and erythrocyte transaminase activation coefficient. [Pg.257]

FIGURE 9.85 Biosynthesis of catecholamines. Tposine is used for the synthesis of various small molecules, which are used as hormones and neurotransmitters. The nutritional biochemist might be especially interested in the pathway of epinephrine bios)mthesis, as it requires the participation of four separate cofactors. These are (1) biopterin (2) pyridoxal phosphate (3) ascorbic acid and (4) S-adenosyl-methionine. [Pg.624]

Figure 7-10. Amino acids that can be converted to succinyl CoA. The amino acids methionine, threonine, isoleucine, and valine, which form succinyl CoA via methylmalonyl CoA, are all essential. The carbons of serine are converted to cysteine and do not form succinyl CoA by this pathway. A defect in cystathionine synthase (M) causes homocystinuria. SAM= S-adenosylmethionine PLP = pyridoxal phosphate. Figure 7-10. Amino acids that can be converted to succinyl CoA. The amino acids methionine, threonine, isoleucine, and valine, which form succinyl CoA via methylmalonyl CoA, are all essential. The carbons of serine are converted to cysteine and do not form succinyl CoA by this pathway. A defect in cystathionine synthase (M) causes homocystinuria. SAM= S-adenosylmethionine PLP = pyridoxal phosphate.
Cysteine synthesis is a primary component of sulfur metabolism. The carbon skeleton of cysteine is derived from serine (Figure 14.7). In animals the sulfhydryl group is transferred from methionine by way of the intermediate molecule homocysteine. (Plants and some bacteria obtain the sulfhydryl group by reduction of SOj to S2 as H2S. A few organisms use H2S directly from the environment.) Both enzymes involved in the conversion of serine to cysteine (cystathionine synthase and y-cystathionase) require pyridoxal phosphate. [Pg.466]

Tyrosine is converted to dopa by the rate-limiting enzyme, tyrosine hydroxylase, which reqnires tetrahydro-biopterin and is inhibited by alpha-methyltyrosine. Dopa is decarboxylated to dopamine by L-aromatic amino acid decarboxylase, which reqnires pyridoxal phosphate (vitamin Bg) as a coenzyme. Carbidopa, which is used with l-dopa in the treatment of parkinsonism, inhibits this enzyme (see Figure 37). Dopamine is converted to norepinephrine by dopamine beta-hydroxylase, which requires ascorbic acid (vitamin C), and is inhibited by diethyldithiocarbamate. Norepinephrine is converted to epinephrine by phenyletha-nolamineN-melhyltransferase (PNMT), requiring S-adenosyl-methionine. The activity of PNMT is stimulated by corticosteroids. [Pg.137]

Fig. 39.1. Overview of the synthesis of the nonessential amino acids. The carbons of 10 amino acids may be produced from glucose through intermediates of glycolysis or the TCA cycle. The 11th nonessential amino acid, tyrosine, is synthesized by hydroxylation of the essential amino acid phenylalanine. Only the sulfur of cysteine comes from the essential amino acid methionine its carbons and nitrogen come from serine. Transamination (TA) reactions involve pyridoxal phosphate (PLP) and another amino acid/a-keto acid pair. Fig. 39.1. Overview of the synthesis of the nonessential amino acids. The carbons of 10 amino acids may be produced from glucose through intermediates of glycolysis or the TCA cycle. The 11th nonessential amino acid, tyrosine, is synthesized by hydroxylation of the essential amino acid phenylalanine. Only the sulfur of cysteine comes from the essential amino acid methionine its carbons and nitrogen come from serine. Transamination (TA) reactions involve pyridoxal phosphate (PLP) and another amino acid/a-keto acid pair.
Abbreviations PP, pyridoxal phosphate PQQ, pyrroloquinoline quinone SAM, 5-adenosyl-L-methionine. A. Ramos et al, manuscript in preparation. [Pg.229]

An early key intermediate in benzylisoquinoline biosynthesis is (57), which by decarboxylation affords (59) this in turn leads to (61) and on to alkaloids (Scheme 2). Confirmation of this pathway has come from a study using cell-free preparations of P. somniferum stems and seed capsules. It was found that this preparation catalysed the formation of (57), (59), and (61) from dopamine (54) plus 3,4-dihydroxyphenylpyruvic acid (55) without the addition of 5-adenosyl-methionine, NADPH, and pyridoxal phosphate, the reaction stopped at (57). The formation of the alkaloids reticuline, thebaine, codeine, and morphine, produced by whole plants, could not be detected with this cell-free system. The results confirm not only the intermediacy of (57) and (59) in benzylisoquinoline biosynthesis, but also the involvement of (54) and (55). [Pg.15]

As noted above, cystathionine formation is the other major fate of methionine. The condensation of homocysteine with serine is catalyzed by the vitamin requiring enzyme cystathionine P-synthase. In the last step of the transsulfuration sequence, cystathionine undergoes cleavage to cysteine and a-ketobutyrate in yet another enzyme reaction that requires pyridoxal phosphate. [Pg.416]

Fig. 20.3 Pathway of methionine metabolism. The numbers represent the following enzymes or sequences (1) methionine adenosyltransferase (2) S-adenosylmethionine-dependent transmethylation reactions (3) glycine methyltransferase (4) S-adenosylhomocysteine hydrolase (5) betaine-homocysteine methyltransferase (6) 5-methyltetrahydrofolate homocysteine methyltransferase (7) serine hydroxymethyltransferase (8) 5,10-methylenetetrahydrofolate reductase (9) S-adenosylmethionine decarboxylase (10) spermidine and spermine synthases (11) methylthio-adenosine phosphorylase (12) conversion of methylthioribose to methionine (13) cystathionine P-synthase (14) cystathionine y-lyase (15) cysteine dioxygenase (16) cysteine suplhinate decarboxylase (17) hypotaurine NAD oxidoreductase (18) cysteine sulphintite a-oxoglutarate aminotransferase (19) sulfine oxidase. MeCbl = methylcobalamin PLP = pyridoxal phosphate... Fig. 20.3 Pathway of methionine metabolism. The numbers represent the following enzymes or sequences (1) methionine adenosyltransferase (2) S-adenosylmethionine-dependent transmethylation reactions (3) glycine methyltransferase (4) S-adenosylhomocysteine hydrolase (5) betaine-homocysteine methyltransferase (6) 5-methyltetrahydrofolate homocysteine methyltransferase (7) serine hydroxymethyltransferase (8) 5,10-methylenetetrahydrofolate reductase (9) S-adenosylmethionine decarboxylase (10) spermidine and spermine synthases (11) methylthio-adenosine phosphorylase (12) conversion of methylthioribose to methionine (13) cystathionine P-synthase (14) cystathionine y-lyase (15) cysteine dioxygenase (16) cysteine suplhinate decarboxylase (17) hypotaurine NAD oxidoreductase (18) cysteine sulphintite a-oxoglutarate aminotransferase (19) sulfine oxidase. MeCbl = methylcobalamin PLP = pyridoxal phosphate...
As the name implies, renal clearance of abnormal levels of homocystine in the plasma causes excessive excretion of the amino acid in the urine. In cystathionine P-synthase deficiency, plasma methionine concentrations are elevated as well -this serves as a point of distinction from the remethylation defects. At present, it appears that the pyridoxal phosphate response may be explained by the fact that this vitamin increases the steady-state concentration of the active enzymes by decreasing the rate of apoenzyme degradation and possibly by increasing the rate of holoenzyme formation. The explanation is not entirely satisfactory, however, since in vitro studies have shown detectable levels of enzyme activity in mutant fibroblasts that have no response, while in other mutant lines without detectable enzyme activity, response has occurred. Once again, a distressing lack of correspondence between in vivo observations and in vitro experiments forces investigators to probe the secrets of these diseases more deeply. [Pg.418]


See other pages where Pyridoxal phosphate methionine is mentioned: [Pg.206]    [Pg.130]    [Pg.676]    [Pg.54]    [Pg.315]    [Pg.219]    [Pg.135]    [Pg.160]    [Pg.766]    [Pg.20]    [Pg.244]    [Pg.257]    [Pg.80]    [Pg.408]    [Pg.693]    [Pg.221]    [Pg.388]    [Pg.311]    [Pg.115]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Pyridoxal phosphat

Pyridoxal phosphate

© 2024 chempedia.info