Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidants pyridinium dichromate

The Collins/Sarett oxidation (chromium trioxide-pyridine complex), and Corey s PCC (pyridinium chlorochromate) and PDC (pyridinium dichromate) oxidations follow a similar pathway as the Jones oxidation. All these oxidants have a chromium (VI), normally yellow, which is reduced to Cr(IV), often green. [Pg.318]

Fluoro-oct-1-en-3-one (82) has been synthesized by allylic hydroxylation of vinyl fluoride (Scheme 31) [77,78], Oxidation of vinyl fluoride (83) using 0.5 equiv. of Se02 and 2 equiv. of ferf-butyl hydroperoxide with a catalytic amount of acetic acid followed by elimination formed to 2-fluoroalk-1-en-3-ols (84) in 32% overall yield for three steps. Subsequent pyridinium dichromate-oxidation of 84 yielded 2-fluoro-oct-1-en-3-one (83) in 81% (Scheme 31). [Pg.719]

H2O addn, isooctane extn, SPE cleanup, pyridinium dichromate oxidation, liq-liq partns, SPE cleanup... [Pg.1041]

The Collins oxidation, Jones oxidation, and Corey s PCC (pyridinium chlorochromate) and PDC (pyridinium dichromate) oxidations follow a similar pathway. [Pg.352]

The avermectins also possess a number of aUyflc positions that are susceptible to oxidative modification. In particular the 8a-methylene group, which is both aUyflc and alpha to an ether oxygen, is susceptible to radical oxidation. The primary product is the 8a-hydroperoxide, which has been isolated occasionally as an impurity of an avermectin B reaction (such as the catalytic hydrogenation of avermectin B with Wilkinson s rhodium chloride-triphenylphosphine catalyst to obtain ivermectin). An 8a-hydroxy derivative can also be detected occasionally as a metaboUte (42) or as an impurity arising presumably by air oxidation. An 8a-oxo-derivative can be obtained by oxidizing 5-0-protected avermectins with pyridinium dichromate (43). This also can arise by treating the 8a-hydroperoxide with base. [Pg.283]

Pyridinium chloride, N-(4-pyridyl)-hydrochloride quaternization, 2, 175 reactions with amines, 2, 241 Pyridinium chlorochromates as oxidizing agents, 2, 170 reactions, 2, 34 Pyridinium dichromate as oxidizing agent, 2, 170 Pyridinium l-dicyanomethylide... [Pg.793]

Conditions that do pennit the easy isolation of aldehydes in good yield by oxidation of primaiy alcohols employ vaiious Cr(VI) species as the oxidant in anhydrous media. Two such reagents ar e pyridinium chlorochromate (PCC), C5H5NH ClCi03, and pyridinium dichromate (PDC), (C5H5NH)2 Ci207 both are used in dichloromethane. [Pg.642]

Oxidation of primary alcohols to aldehydes (Section 15.10) Pyridinium dichromate (PDC) or pyridinium chloro-chromate (PCC) in anhydrous media such as dichloromethane oxidizes primary alcohols to aldehydes while avoiding overoxidation to carboxylic acids. [Pg.710]

The aldehyde function at C-85 in 25 is unmasked by oxidative hydrolysis of the thioacetal group (I2, NaHCOs) (98 % yield), and the resulting aldehyde 26 is coupled to Z-iodoolefin 10 by a NiCh/CrCH-mediated process to afford a ca. 3 2 mixture of diaste-reoisomeric allylic alcohols 27, epimeric at C-85 (90 % yield). The low stereoselectivity of this coupling reaction is, of course, inconsequential, since the next operation involves oxidation [pyridinium dichromate (PDC)] to the corresponding enone and. olefination with methylene triphenylphosphorane to furnish the desired diene system (70-75% overall yield from dithioacetal 9). Deprotection of the C-77 primary hydroxyl group by mild acid hydrolysis (PPTS, MeOH-ClHhCh), followed by Swem oxidation, then leads to the C77-C115 aldehyde 28 in excellent overall yield. [Pg.724]

Spirothiopyrans 45b including a benzopyrylium ring have been prepared in one step by condensation of 2-aminovinyl-3-formyl chromone-4-thione 47 with 1,2,3,3-tetramethylindolinium salts in ethanol (Scheme 25).90 The precursor 47 is prepared from 3-carboxymethylene-2-methyl-chromone-4-thione 48. First, oxidation of 48 with pyridinium dichromate in CH2C12, and then condensation with dimethyl formamide dimethyl acetal in benzene gave compound 47. [Pg.39]

General Considerations. The following chemicals were commercially available and used as received 3,3,3-Triphenylpropionic acid (Acros), 1.0 M LiAlH4 in tetrahydrofuran (THF) (Aldrich), pyridinium dichromate (Acros), 2,6 di-tert-butylpyridine (Acros), dichlorodimethylsilane (Acros), tetraethyl orthosilicate (Aldrich), 3-aminopropyltrimethoxy silane (Aldrich), hexamethyldisilazane (Aldrich), tetrakis (diethylamino) titanium (Aldrich), trimethyl silyl chloride (Aldrich), terephthaloyl chloride (Acros), anhydrous toluene (Acros), and n-butyllithium in hexanes (Aldrich). Anhydrous ether, anhydrous THF, anhydrous dichloromethane, and anhydrous hexanes were obtained from a packed bed solvent purification system utilizing columns of copper oxide catalyst and alumina (ether, hexanes) or dual alumina columns (tetrahydrofuran, dichloromethane) (9). Tetramethylcyclopentadiene (Aldrich) was distilled over sodium metal prior to use. p-Aminophenyltrimethoxysilane (Gelest) was purified by recrystallization from methanol. Anhydrous methanol (Acros) was... [Pg.268]

A variety of oxidizing agents are available to prepare aldehydes from 1° alcohols such as pyridinium chlorochromate (PCC) and pyridinium dichromate (PDC). [Pg.470]

AW, Acid-washed Choi, Cholesterol DMAP, 4-(Dimethylamino)pyridine DMF, N,/V-Dimethylformamide DMTr, Di(p-niethoxyphenyl)phenyl methyl GalNAc, N-Acetylgalactosamine, 2-acetamido-2-deoxy-D-galactose HMF, 5-Hydroxymethylfur-fural, 5-(hydroxymethyl)-2-furaldehyde INOC, Intramolecular nitrile oxide-alkene cycloaddition Lea, Lewisa Lex, Lewisx MOM, Methoxymethyl MP, p-Methoxyphe-nyl MS, Molecular sieves NIS, N-Iodosuccinimide PCC, Pyridinium chlorochromate PDC, Pyridinium dichromate PMA, Phosphomolybdic acid PMB, p-Methoxybenzyl ... [Pg.29]

A simple two-step protocol for the generation of a terminal diene is to add allyl magnesium bromide to an aldehyde or a ketone and subsequent acid or base catalysed dehydration (equation 34)72. Cheng and coworkers used this sequence for the synthesis of some indole natural products (equation 35)72a. Regiospecific dienones can be prepared by 1,2-addition of vinyllithium to a,/l-unsaturated carbonyl compounds and oxidative rearrangement of the resulting dienols with pyridinium dichromate (equation 36)73. [Pg.378]

Leach-proof sol-gel entrapment can be exploited to carry out one-pot reactions with mutually destructive reactants while still allowing these reagents to activate or participate in desired reactions. For instance, three different one-pot redox reactions can be carried out in sequence in one pot over two separate sol-gel matrices doped with an oxidant (pyridinium dichromate) and with a reducing species (RhCl[P(C6H5)3]3) without their mutual destruction and with no need for separation steps (Figure 5.12).24... [Pg.127]

Adogen has been shown to be an excellent phase-transfer catalyst for the per-carbonate oxidation of alcohols to the corresponding carbonyl compounds [1]. Generally, unsaturated alcohols are oxidized more readily than the saturated alcohols. The reaction is more effective when a catalytic amount of potassium dichromate is also added to the reaction mixture [ 1 ] comparable results have been obtained by the addition of catalytic amounts of pyridinium dichromate [2], The course of the corresponding oxidation of a-substituted benzylic alcohols is controlled by the nature of the a-substituent and the organic solvent. In addition to the expected ketones, cleavage of the a-substituent can occur with the formation of benzaldehyde, benzoic acid and benzoate esters. The cleavage products predominate when acetonitrile is used as the solvent [3]. [Pg.443]

Kinetic studies of the oxidation of some a-hydroxy acids with pyridinium dichromate (PDC) are consistent with a mechanism involving the loss of H2O from the pro-tonated substrate in the rate-determining step. The oxidation of 8-hydroxyquinoline (oxine) by PDC has been studied. The intermediacy of an acetochromate ion in the oxidation of some acetophenone oximes with PDC is suggested. [Pg.218]

Upon hydrogenation of 24 a 1,2-rearrangement of the epoxide occurred generating aldehyde 25 as a mixture of diastereoisomers. After reaction with methyl lithium, the diastereomeric alcohols 26 and 27 were separated and isolated in yields of 23% and 71%. While alcohol 26 as the minor diastereo-isomer could be oxidized with pyridinium dichromate (PDC) and methyle-nated to give the enantiomer of kelsoene (cnM), its diastereoisomer 27 with the inverse configuration at C-7 required a supplementary epimerization step with sodium methanolate. The enantiomerically pure ent- allowed for the determination of the absolute configuration of natural kelsoene (1) [9, 10]. The previously reported assignment based on NMR-correlation experiments [5] was corrected. [Pg.9]

The BTSP-pyridinium dichromate system has proved to be effective for generation of the oxodiperoxochromium complex 22 in dichloromethane. As the peroxo complex decomposed easily, the oxidant BTSP was added dropwise to the reaction mixture using a syringe drive. The BTSP was stable enough even upon contact with the metallic surface of the syringe needle when it was diluted with dichloromethane. Typical results for the conversion of alcohols into carbonyl compounds are summarized in Table 7. [Pg.787]


See other pages where Oxidants pyridinium dichromate is mentioned: [Pg.326]    [Pg.205]    [Pg.164]    [Pg.199]    [Pg.76]    [Pg.36]    [Pg.49]    [Pg.326]    [Pg.205]    [Pg.164]    [Pg.199]    [Pg.76]    [Pg.36]    [Pg.49]    [Pg.438]    [Pg.256]    [Pg.241]    [Pg.538]    [Pg.1514]    [Pg.1065]    [Pg.45]    [Pg.104]    [Pg.768]    [Pg.426]    [Pg.522]    [Pg.750]    [Pg.503]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Alcohol oxidation with chromium pyridinium dichromate

Alcohols oxidation with pyridinium dichromate

Alcohols, secondary, oxidation with pyridinium dichromate

Dichromate

Dichromate oxidant

Dichromate oxidation

Dichromism

Oxidation pyridinium dichromate

Oxidation pyridinium dichromate

Pyridinium dichromate

Pyridinium dichromate allylic oxidation

Pyridinium dichromate oxidation solvents

Pyridinium dichromate, alcohol oxidation

Pyridiniums oxidation

© 2024 chempedia.info