Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridine, aromaticity basicity

Pyridine shows all the characteristics of aromatic compounds. It has a resonance energy of 113 kJ/mol (27 kcal/mol) and it usually undergoes substitution rather than addition. Because it has an available pair of nonbonding electrons, pyridine is basic (Figure 16-11). In an acidic solution, pyridine protonates to give the pyridinium ion. The pyridinium ion is still aromatic because the additional proton has no effect on the electrons of the aromatic sextet It simply bonds to pyridine s nonbonding pair of electrons. [Pg.731]

Pyridine is basic, with nonbonding electrons available to abstract a proton. The protonated pyridine (a pyridinium ion) is still aromatic. [Pg.731]

Olah s original preparative nitrations were carried out with mixtures of the aromatic compound and nitronium salt alone or in ether, and later with sulpholan as the solvent. High yields of nitro-compounds were obtained from a wide range of aromatic compounds, and the anhydrous conditions have obvious advantages when functional groups such as cyano, alkoxycarbonyl, or halogenocarbonyl are present. The presence of basic fimctions raises difficulties with pyridine no C-nitration occurs, i-nitropyridinium being formed. ... [Pg.61]

As early as 1889 Walker (320), using samples of thiazole, 2,4-dimethylthiazoie, pyridine, and 2,6-dimethylpyridine obtained from Hantzsch s laboratory, measured the electrical conductivity of their chlorhydrates and compared them with those of salts of other weak bases, especially quinoline and 2-methylquinoline. He observed the following order of decreasing proton affinity (basicity) quinaldine>2,6-dimethyl-pyridine>quinoline>pyridine>2,4-dimethylthiazole> thiazole, and concluded that the replacement of a nuclear H-atom by a methyl group enhanced the basicity of the aza-aromatic substrates. [Pg.91]

Nonaromatic heterocyclic compounds piperidine for example are similar m basic ity to alkylamines When nitrogen is part of an aromatic ring however its basicity decreases markedly Pyridine for example resembles arylammes m being almost 1 mil lion times less basic than piperidine... [Pg.922]

Pyrrole has a planar, pentagonal (C2 ) stmcture and is aromatic in that it has a sextet of electrons. It is isoelectronic with the cyclopentadienyl anion. The TT-electrons are delocalized throughout the ring system, thus pyrrole is best characterized as a resonance hybrid, with contributing stmctures (1 5). These stmctures explain its lack of basicity (which is less than that of pyridine), its unexpectedly high acidity, and its pronounced aromatic character. The resonance energy which has been estimated at about 100 kj/mol (23.9 kcal/mol) is intermediate between that of furan and thiophene, or about two-thirds that of benzene (5). [Pg.354]

To minimize the formation of fuhninating silver, these complexes should not be prepared from strongly basic suspensions of silver oxide. Highly explosive fuhninating silver, beheved to consist of either silver nitride or silver imide, may detonate spontaneously when silver oxide is heated with ammonia or when alkaline solutions of a silver—amine complex are stored. Addition of appropriate amounts of HCl to a solution of fuhninating silver renders it harmless. Stable silver complexes are also formed from many ahphatic and aromatic amines, eg, ethylamine, aniline, and pyridine. [Pg.90]

Dyes, Dye Intermediates, and Naphthalene. Several thousand different synthetic dyes are known, having a total worldwide consumption of 298 million kg/yr (see Dyes AND dye intermediates). Many dyes contain some form of sulfonate as —SO H, —SO Na, or —SO2NH2. Acid dyes, solvent dyes, basic dyes, disperse dyes, fiber-reactive dyes, and vat dyes can have one or more sulfonic acid groups incorporated into their molecular stmcture. The raw materials used for the manufacture of dyes are mainly aromatic hydrocarbons (67—74) and include ben2ene, toluene, naphthalene, anthracene, pyrene, phenol (qv), pyridine, and carba2ole. Anthraquinone sulfonic acid is an important dye intermediate and is prepared by sulfonation of anthraquinone using sulfur trioxide and sulfuric acid. [Pg.79]

Pyridinethiones acylation, 2, 357 alkylation, 2, 357 aromaticity, 2, 148 protonation, 2, 357 tautomerism, 2, 356 Pyridine-2-thiones aromaticity, 2, 156 basicity, 2, 157 oxidation, 2, 357 N-oxide, sodium salt biocide, 1, 399 synthesis, 2, 360... [Pg.793]

Sulfonamides (R2NSO2R ) are prepared from an amine and sulfonyl chloride in the presence of pyridine or aqueous base. The sulfonamide is one of the most stable nitrogen protective groups. Arylsulfonamides are stable to alkaline hydrolysis, and to catalytic reduction they are cleaved by Na/NH3, Na/butanol, sodium naphthalenide, or sodium anthracenide, and by refluxing in acid (48% HBr/cat. phenol). Sulfonamides of less basic amines such as pyrroles and indoles are much easier to cleave than are those of the more basic alkyl amines. In fact, sulfonamides of the less basic amines (pyrroles, indoles, and imidazoles) can be cleaved by basic hydrolysis, which is almost impossible for the alkyl amines. Because of the inherent differences between the aromatic — NH group and simple aliphatic amines, the protection of these compounds (pyrroles, indoles, and imidazoles) will be described in a separate section. One appealing proj>erty of sulfonamides is that the derivatives are more crystalline than amides or carbamates. [Pg.379]

There is another important factor in the low reactivity of pyridine derivatives toward electrophilic substitution. The —N=CH— unit is basic because the electron pair on nitrogen is not part of the aromatic n system. The nitrogen is protonated or complexed with a Lewis acid under many of the conditions typical of electrophilic substitution reactions. The formal positive charge present at nitrogen in such species further reduces the reactivity toward electrophiles. [Pg.570]

Imidazole and its derivatives form an interesting and important class of heterocyclic aromatic fflnines. Imidazole is approximately 100 times more basic than pyridine. [Pg.922]

Certain aromatic, nitrogen compounds (e.g., pyridines and quinolines) are basic and can cause coking on acid catalysts during petroleum processing. [Pg.322]

Nitrogen compounds in crudes may generally be classified into basic and non-basic categories. Basic nitrogen compounds are mainly those having a pyridine ring, and the non-basic compounds have a pyrrole structure. Both pyridine and pyrrole are stable compounds due to their aromatic nature. [Pg.16]

Purine has three basic, pyridine-like nitrogens with lone-pair electrons in sp2 orbitals in the plane of the ring. The remaining purine nitrogen is nonbasic and pyrrole-like, with its lone-pair electrons as part of the aromatic i- electron system. [Pg.951]

Taking into account the close relationship to pyridines one would expect 2-pyridones to express similar type of reactivities, but in fact they are quite different. 2-Pyridones are much less basic than pyridines (pKa 0.8 and 5.2, respectively) and have more in common with electron-rich aromatics. They undergo halogenations (a. Scheme 10) [67] and other electrophilic reactions like Vilsmeier formylation (b. Scheme 10) [68,69] and Mannich reactions quite easily [70,71], with the 3 and 5 positions being favored. N-unsubstituted 2-pyridones are acidic and can be deprotonated (pJCa 11) and alkylated at nitrogen as well as oxygen, depending on the electrophile and the reaction conditions [24-26], and they have also been shown to react in Mitsonobu reactions (c. Scheme 10) [27]. [Pg.16]

As BH dissociates into H+ and the uncharged base B, the dielectric constant can exert only a minor effect on the mutual coulombic attraction, so that even in water (e = 78.5) the pKa values of aliphatic amines do not differ much from the above picture of the influence of solvent basicity. That piiTa(water) lies between ptfa(m.cresoi) and p a(acetlc acid) instead of between the latter and p.Ka(pyridine) may be ascribed to effects of solvation however, the p a(Water) values of the aromatic amines are low owing to effects of mesomerism. [Pg.291]

Another interesting class of five-membered aromatic heterocycles has recently been published by Tron et al. [54]. These compounds have biological activity in the nM range. An example of the formation of these furazan (1,2,5-oxadiazole) derivatives is shown in Scheme 9. The diol 50 was oxidized to the diketone 51 using TEMPO and sodium hypochlorite. Transformation to the bisoxime 52 was performed in an excess of hydroxylamine hydrochloride and pyridine at high temperature for several days. Basic dehydration of 52 formed two products (53a and b). A Mitsunobu reaction was then employed using toluene as solvent to form compound 53b in 24% yield. [Pg.31]


See other pages where Pyridine, aromaticity basicity is mentioned: [Pg.1313]    [Pg.247]    [Pg.405]    [Pg.448]    [Pg.178]    [Pg.71]    [Pg.172]    [Pg.322]    [Pg.322]    [Pg.324]    [Pg.227]    [Pg.187]    [Pg.118]    [Pg.133]    [Pg.16]    [Pg.101]    [Pg.949]    [Pg.1021]    [Pg.56]    [Pg.84]    [Pg.41]    [Pg.297]    [Pg.178]    [Pg.102]    [Pg.72]    [Pg.266]    [Pg.246]   
See also in sourсe #XX -- [ Pg.923 , Pg.949 ]

See also in sourсe #XX -- [ Pg.923 , Pg.949 ]

See also in sourсe #XX -- [ Pg.755 ]

See also in sourсe #XX -- [ Pg.950 , Pg.976 ]




SEARCH



Basic Aromatics

Pyridine aromaticity

Pyridine basicity

© 2024 chempedia.info