Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pure Oxides

The pure oxide is then obtained by heating the precipitated hydroxide ... [Pg.142]

The pure oxide is dissolved in molten cryolite in an iron bath lined with graphite which acts as the cathode (see Figure 7.1). The anode... [Pg.142]

Chemical products are produced from technical-grade oxide in two very different ways. Molybdenum trioxide can be purified by a sublimation process because molybdenum trioxide has an appreciable vapor pressure above 650°C, a temperature at which most impurities have very low volatiUty. The alternative process uses wet chemical methods in which the molybdenum oxide is dissolved in ammonium hydroxide, leaving the gangue impurities behind. An ammonium molybdate is crystallized from the resulting solution. The ammonium molybdate can be used either directly or thermally decomposed to produce the pure oxide, MoO. ... [Pg.463]

T. W. Newton, D. E. Hobart, and P. D. Palmer, The Preparation and Stability of Pure Oxidation States of Neptunium, Plutonium, andMmericium, LAUR-86-967, Los Alamos National Laboratory, Calif., 1986. [Pg.206]

Another method iavolves an electric-arc vaporizer which is >2000° C before burning (25,32). One of the features of the process is a rapid quench of the hot gas flow to yield very fine oxide particles (<0.15 nm). This product is quite reactive and imparts accelerated cure rates to mbber. Internally fired rotary kilns are used extensively ia Canada and Europe and, to a limited extent, ia the United States (24). The burning occurs ia the kiln and the heat is sufficient to melt and vaporize the ziac. Because of the lower temperatures, the particles are coarser than those produced ia the other processes. In a fourth process, ziac metal which is purified ia a vertical refining column is burned. In essence, the purification is a distillation and impure ziac can be used to make extremely pure oxide. Also, a wide range of particle sizes is possible (33). [Pg.422]

Cerium is used in several forms other than as the pure oxide. Only a small fraction of the 70,000 ton Ln total is produced as separated, relatively pure individual Ln derivatives, cerium included. The bulk of the material is consumed as concentrates, cerium included. [Pg.368]

Alumina (AI2O3) was one of the first pure oxides to be produced in complex shapes, but its combination of high expansion coefficient, poor conductivity and low toughness gives it bad thermal-shock resistance. [Pg.206]

Take the silica-alumina system as an example. It is convenient to treat the components as the two pure oxides SiOj and AI2O3 (instead of the three elements Si, A1 and O). Then the phase diagram is particularly simple, as shown in Fig. 16.6. There is a compound, mullite, with the composition (Si02)2 (Al203)3, which is slightly more stable than the simple solid solution, so the alloys break up into mixtures of mullite and alumina, or mullite and silica. The phase diagram has two eutectics, but is otherwise straightforward. [Pg.173]

The alkoxides and aryloxides, particularly of yttrium have excited recent interest. This is because of their potential use in the production of electronic and ceramic materials,in particular high temperature superconductors, by the deposition of pure oxides (metallo-organic chemical vapour deposition, MOCVD). They are moisture sensitive but mostly polymeric and involatile and so attempts have been made to inhibit polymerization and produce the required volatility by using bulky alkoxide ligands. M(OR)3, R = 2,6-di-terr-butyl-4-methylphenoxide, are indeed 3-coordinate (pyramidal) monomers but still not sufficiently volatile. More success has been achieved with fluorinated alkoxides, prepared by reacting the parent alcohols with the metal tris-(bis-trimethylsilylamides) ... [Pg.951]

Pure iron, when needed, is produced on a relatively small scale by the reduction of the pure oxide or hydroxide with hydrogen, or by the carbonyl process in which iron is heated with carbon monoxide under pressure and the Fe(CO)5 so formed decomposed at 250°C to give the powdered metal. However, it is not in the pure state but in the form of an enormous variety of steels that iron finds its most widespread uses, the world s annual production being over 700 million tonnes. [Pg.1071]

Perhaps the closest approach to pure oxidation in everyday conditions arises in domestic electric heating appliances where the elements are exposed to the air. At some points the elements are necessarily in contact with supporting refractories, and if these are not of adequate purity, accelerated corrosion leading to early failure can occur. In a similar way the sheathed radiant-type elements of electric cookers usually fail owing to the corrosive effects of contaminants such as animal fats or salts from spilled liquids. [Pg.952]

THERMODYNAMICS AND KINETICS OF GAS-METAL SYSTEMS Thus when the oxidation of pure metal to pure oxide is betpg considered... [Pg.1100]

Cu will be unaffected by the atmosphere, whilst at other atmospheric compositions the pure oxides will be stable. Figure 7.76 illustrates a simplified diagram at 871°C for three metallic elements Cr/Mn/Ni-S-O in a heat-resisting alloy the range for coal gasification is also included. It is clear that CrjOj is stable in all these atmospheres, but NiS will be stable under these atmospheric conditions above 620°C in the form of a eutectic liquid with Ni. Thus, an alloy of Cr and Ni may produce either of these phases or their mixtures leading to corrosion problems. [Pg.1126]

Tantalum and niobium are added, in the form of carbides, to cemented carbide compositions used in the production of cutting tools. Pure oxides are widely used in the optical industiy as additives and deposits, and in organic synthesis processes as catalysts and promoters [12, 13]. Binary and more complex oxide compounds based on tantalum and niobium form a huge family of ferroelectric materials that have high Curie temperatures, high dielectric permittivity, and piezoelectric, pyroelectric and non-linear optical properties [14-17]. Compounds of this class are used in the production of energy transformers, quantum electronics, piezoelectrics, acoustics, and so on. Two of... [Pg.1]

In the case of pure oxides, M3Me04 compounds are formed. [Pg.37]

Fig. 7. Best-fit agreement between experimental and calculated ignition data for PBAA/AN composite propellant (P8). Key O, pure-oxidizer environment A, oxidizer-nitrogen environment at 55 psia total pressure. Fig. 7. Best-fit agreement between experimental and calculated ignition data for PBAA/AN composite propellant (P8). Key O, pure-oxidizer environment A, oxidizer-nitrogen environment at 55 psia total pressure.
As it can be observed in Table 13.1, Ir supported over pure oxides exhibited low acidity, but Ir supported on mixed Nb20s-Si02 displayed an important enhancement in the surface acidity with surface coverage by niobia increases. Binding energies (BE) of core-level electrons and metal surface composition were obtained from XP spectra. The BE values of Si 2p, Ti 2p3/2, Nb 3ds/2 were 103.4, 458.5 and 123 eV respectively, which are exactly the expected values considering the presence of oxides of Si (IV), Ti (IV) and Nb (V). With regard to Ir 4f7/2 core level, a... [Pg.119]

In addition to pure oxides, oxidic minerals and ores also can be converted to metal chlorides. Examples include minerals such as zircon, bastnasite, monazite, ilmenite, etc. [Pg.402]

Ammonium hydrogen fluoride (NH4HF2) is useful for converting pure oxides or hydroxides to the corresponding fluorides. The reaction occurs through the formation of a double fluoride. For example, with vanadium sesquioxide the following reactions occur ... [Pg.414]

Results are reported in Table 1 and Figure 2. The pure oxide shows in fact activity, but it is much lower than that observed over Cu/MgO. On the other hand the presence of CuO inhibits greatly the transfer reaction, as shown by very low activity of the unreduced CuO/MgO catalyst. Moreover the equatorial alcohol is almost exclusively formed, suggesting that the basicity of MgO is mainly responsible for the stereochemistry of the product. [Pg.295]

Presence of nitric acid or nitrates in chromium trioxide may cause oxidation reactions to accelerate out of control, possibly owing to formation of chromyl nitrate. Samples of the oxides should be tested by melting before use, and those evolving oxides of nitrogen should be discarded [1], A closed container of the pure oxide exploded violently when laid down on its side. This was attributed to unsuspected contamination of the container [2],... [Pg.1481]

A wide range of nonacidic metal oxides have been examined as catalysts for aromatization and skeletal isomerization. From a mechanistic point of view, chromium oxide catalysts have been, by far, the most thoroughly studied. Reactions over chromium oxide have been carried out either over the pure oxide, or over a catalyst consisting of chromium oxide supported on a carrier, usually alumina. Depending on its history, the alumina can have an acidic function, so that the catalyst as a whole then has a duel function character. However, in this section, we propose only briefly to outline, for comparison with the metal catalyzed reactions described in previous sections, those reactions where the acidic catalyst function is negligible. [Pg.81]

Four solid oxide electrolyte systems have been studied in detail and used as oxygen sensors. These are based on the oxides zirconia, thoria, ceria and bismuth oxide. In all of these oxides a high oxide ion conductivity could be obtained by the dissolution of aliovalent cations, accompanied by the introduction of oxide ion vacancies. The addition of CaO or Y2O3 to zirconia not only increases the electrical conductivity, but also stabilizes the fluorite structure, which is unstable with respect to the tetragonal structure at temperatures below 1660 K. The tetragonal structure transforms to the low temperature monoclinic structure below about 1400 K and it is because of this transformation that the pure oxide is mechanically unstable, and usually shatters on cooling. The addition of CaO stabilizes the fluorite structure at all temperatures, and because this removes the mechanical instability the material is described as stabilized zirconia (Figure 7.2). [Pg.239]


See other pages where Pure Oxides is mentioned: [Pg.39]    [Pg.253]    [Pg.422]    [Pg.369]    [Pg.239]    [Pg.431]    [Pg.372]    [Pg.1098]    [Pg.112]    [Pg.227]    [Pg.17]    [Pg.268]    [Pg.715]    [Pg.122]    [Pg.236]    [Pg.56]    [Pg.119]    [Pg.120]    [Pg.479]    [Pg.561]    [Pg.561]    [Pg.562]    [Pg.117]    [Pg.43]    [Pg.457]    [Pg.301]    [Pg.302]    [Pg.8]   


SEARCH



Acid-base properties pure oxides

Adsorption and Electro-Oxidation of CO at Pure Platinum Catalysts

Pure and mixed metal oxides

Pure and mixed oxides

Pure polyethylene oxide)

Styrene oxide optically pure

© 2019 chempedia.info