Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pure liquid viscosity

Currently the most accurate method for predicting pure liquid viscosity is the following GC method. [Pg.535]

Liquid viscosity is one of the most difficult properties to calculate with accuracy, yet it has an important role in the calculation of heat transfer coefficients and pressure drop. No single method is satisfactory for all temperature and viscosity ranges. We will distinguish three cases for pure hydrocarbons and petroleum fractions ... [Pg.126]

Figure 2.1 served as the basis for our initial analysis of viscosity, and we return to this representation now with the stipulation that the volume of fluid sandwiched between the two plates is a unit of volume. This unit is defined by a unit of contact area with the walls and a unit of separation between the two walls. Next we consider a shearing force acting on this cube of fluid to induce a unit velocity gradient. According to Eq. (2.6), the rate of energy dissipation per unit volume from viscous forces dW/dt is proportional to the square of the velocity gradient, with t]q (pure liquid, subscript 0) the factor of proportionality ... [Pg.587]

Liquid Viscosity The viscosity of both pure hydrocarbon and pure nonhydrocarbon hquids are most accurately predicted by the method of van Velzen et al. The basic equation (2-112) depends on group contributions which are dependent on stnic tiire for the calculation of compound-specific constants B and To-... [Pg.409]

A mixing rule developed by Kendall and Monroe" is useful for determining the liquid viscosity of defined Iiydi ocai bon mixtiai es. Equation (2-119) depends only on the pure component viscosities at the given temperature and pressure and the mixture composition. [Pg.411]

The viscosity of a fluid arises from the internal friction of the fluid, and it manifests itself externally as the resistance of the fluid to flow. With respect to viscosity there are two broad classes of fluids Newtonian and non-Newtonian. Newtonian fluids have a constant viscosity regardless of strain rate. Low-molecular-weight pure liquids are examples of Newtonian fluids. Non-Newtonian fluids do not have a constant viscosity and will either thicken or thin when strain is applied. Polymers, colloidal suspensions, and emulsions are examples of non-Newtonian fluids [1]. To date, researchers have treated ionic liquids as Newtonian fluids, and no data indicating that there are non-Newtonian ionic liquids have so far been published. However, no research effort has yet been specifically directed towards investigation of potential non-Newtonian behavior in these systems. [Pg.56]

L. L. Blyler and T. K. Kwei [39] proposed the direct opposite (to 4). In their reasoning, they proceeded from the known and generally acceptable Doolittle equation, which puts liquid viscosity in exponential dependence on the inverse value of the free volume of the latter. According to [39], gas has a volume of its own, the value of which it contributes to the free volume of the polymer when it dissolves therein as a result, viscosity falls. The theoretical formula obtained by the authors was experimentally confirmed in the same work. The authors measured pressure values at the entrance of cylindrical capillaries, through which melts of both pure polyethylene, and polyethylene with gas dissolved in it, extruded at a constant rate. [Pg.109]

Viscosity values will be needed for any design calculations involving the transport of fluids or heat. Values for pure substances can usually be found in the literature see Yaws (1993-1994). Liquid viscosities are given in Appendix C. Methods for the estimation of viscosity are given below. [Pg.316]

A rough estimate of the viscosity of a pure liquid at its boiling point can be obtained from the modified Arrhenius equation ... [Pg.316]

Iwahashi, M. Hayashi, Y. Hachiya, N. Matsuzawa, H. Kobayashi, H., Self-association of octan-l-ol in the pure liquid state and in decane solutions as observed by viscosity, selfdiffusion, nuclear magnetic resonance and near-infrared spectroscopy measurements, J. Chem. Soc. Faraday Trans. 89, 707-712 (1993). [Pg.255]

The coefficients are defined for infinitely dilute solution of solute in the solvent L. However, they are assumed to be valid even for concentrations of solute of 5 to 10 mol.%. The relationships are available for pure solvent, and could be used for mixture of solvents composed of molecules of close size and shape. They all refer to the solvent viscosity which can be estimated or measured. Pressure has a negligible influence on liquid viscosity, which decreases with temperature. As a consequence, pressure has a weak influence on liquid diffusion coefficient conversely, diffusivity increases significantly with temperature (Table 45.4). For mixtures of liquids, an averaged value for the viscosity should be employed. [Pg.1525]

For a Newtonian fluid, the shear stress is proportional to the shear rate, the constant of proportionality being the coefficient of viscosity. The viscosity is a property of the material and, at a given temperature and pressure, is constant. Non-Newtonian fluids exhibit departures from this type of behaviour. The relationship between the shear stress and the shear rate can be determined using a viscometer as described in Chapter 3. There are three main categories of departure from Newtonian behaviour behaviour that is independent of time but the fluid exhibits an apparent viscosity that varies as the shear rate is changed behaviour in which the apparent viscosity changes with time even if the shear rate is kept constant and a type of behaviour that is intermediate between purely liquid-like and purely solid-like. These are known as time-independent, time-dependent, and viscoelastic behaviour respectively. Many materials display a combination of these types of behaviour. [Pg.48]

Since there is no change in surface tension with a change in the rate of a pure liquid surface (i.e., d A/d II = infinity), the elasticity is zero. The interfacial dilational viscosity, ks, is defined as... [Pg.81]

As is known, if one blows air bubbles in pure water, no foam is formed. On the other hand, if a detergent or protein (amphiphile) is present in the system, adsorbed surfactant molecules at the interface produce foam or soap bubble. Foam can be characterized as a coarse dispersion of a gas in a liquid, where the gas is the major phase volume. The foam, or the lamina of liquid, will tend to contract due to its surface tension, and a low surface tension would thus be expected to be a necessary requirement for good foam-forming property. Furthermore, in order to be able to stabilize the lamina, it should be able to maintain slight differences of tension in its different regions. Therefore, it is also clear that a pure liquid, which has constant surface tension, cannot meet this requirement. The stability of such foams or bubbles has been related to monomolecular film structures and stability. For instance, foam stability has been shown to be related to surface elasticity or surface viscosity, qs, besides other interfacial forces. [Pg.165]

The surface viscosity effect on terminal velocity results in a calculated drag curve that is closer to the one for rigid spheres (K5). The deep dip exhibited by the drag curve for drops in pure liquid fields is replaced by a smooth transition without a deep valley. The damping of internal circulation reduces the rate of mass transfer. Even a few parts per million of the surfactant are sometimes sufficient to cause a very radical change. [Pg.83]

With this background of non-Newtonian behavior in hand, let us examine the viscous behavior of suspensions and slurries in ceramic systems. For dilute suspensions on noninteracting spheres in a Newtonian liquid, the viscosity of the suspension, r)s, is greater than the viscosity of the pure liquid medium, rjp. In such cases, a relative viscosity, rjr, is utilized, which is defined as rjs/rjL. For laminar flow, is given by the Einstein equation... [Pg.298]

This means that an aqueous salt solution should not be viewed as a homogeneous liquid with a modified inter-molecular interaction, but rather as a colloidal suspension of inert particles in pure liquid water, with the particles formed by the ions and their first solvation shells. Following this view of an aqueous salt solution, the viscosity at low concentration can be described by the Einstein equation [19] ... [Pg.155]

The viscosity of a liquid is related directly to the type and size of the molecules which make up the liquid. The variation of liquid viscosity with molecular structure is not known with exactness however, the viscosities of liquids which are members of a homologous series are known to vary in a regular manner, as do most other physical properties. For example, pure paraffin hydrocarbons exhibit a regular increase in viscosity as the size and complexity of the hydrocarbon molecules increase. [Pg.236]

Kxtemivc work has been done on measuring liquid viscosities of the pure Penh. indthcu aqueous solutions Fig-uie 24-9 is a plm of ilw pure ncid viscosities up to I50T. Figures 24-U> 24-11. and 24 12 present aqueous solution data from the Iniwiuttonul CrUiait rj/tfri. ... [Pg.24]

HI. 3 Viscosity Determination of Pure Liquids, Solutions and Serums Using Capillary Viscometry... [Pg.1131]

Capillary viscometers are ideal for measuring the viscosity of Newtonian fluids. However, they are unsuitable for non-Newtonian fluids since variations in hydrostatic pressure during sample efflux results in variations in shear rate and thus viscosity. This unit contains protocols for measuring the viscosity of pure liquids and solutions (see Basic Protocol) and serums from fruit juices and pastes (see Alternate Protocol). [Pg.1153]

BASIC USING CAPILLARY VISCOMETRY TO DETERMINE THE VISCOSITY OF PROTOCOL PURE LIQUIDS AND SOLUTIONS... [Pg.1154]

This protocol describes a method for measuring the viscosity of pure liquids and solutions by capillary viscometry. The sample is loaded into a Cannon-Fenske viscometer. The time required for the sample to flow between two time points on the viscometer is used to calculate the kinematic viscosity or viscosity. [Pg.1154]

This method is an adaptation of the Basic Protocol for measuring the viscosity of pure liquids and solutions. The °brix (unithi.4) of the sample is adjusted to a desired value by dilution. In many protocols, a nominal value of 5 °brix is the accepted target value for dilution. The sample is then filtered to remove particles that would plug the capillary tube of the viscometer, and the serum viscosity is measured in a Cannon-Fenske viscometer. [Pg.1155]


See other pages where Pure liquid viscosity is mentioned: [Pg.114]    [Pg.247]    [Pg.114]    [Pg.247]    [Pg.90]    [Pg.122]    [Pg.126]    [Pg.584]    [Pg.381]    [Pg.411]    [Pg.1418]    [Pg.1426]    [Pg.72]    [Pg.31]    [Pg.319]    [Pg.59]    [Pg.194]    [Pg.137]    [Pg.161]    [Pg.424]    [Pg.92]   
See also in sourсe #XX -- [ Pg.114 , Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.119 ]




SEARCH



Liquid viscosities

Liquids pure, viscosity measurement

Pure liquids

The Normal Viscosity of Pure Liquids

Theories Regarding the Viscosity of Pure Liquids

Viscosity Determination of Pure Liquids, Solutions, and Serums Using Capillary Viscometry

Viscosity of pure liquids

© 2024 chempedia.info