Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pterins transfer

The molybdenum cofactor was liberated from D. gigas AOR, and under appropriate conditions was transferred quantitatively to nitrate reductase in extracts of Neurospora crassa nit-1 mutant) to yield active nitrate reductase 217). On the basis of molybdenum content, the activity observed for reconstitution with molybdenum cofactor of D. gigas was lower (25%) than the values observed for the procedure using extractable molybdenum cofactor of XO, used as reference. This result can now be put in the context of the difference in pterin present (MPT-XO and MCD-AOR) 218). [Pg.400]

In summary, we may add that bacterial utilization of quinoline and its derivatives as a rule depends on the availability of traces of molybdate in the culture medium [363], In contrast, growth of the bacterial strains on the first intermediate of each catabolic pathway, namely, the lH-2-oxo or 1 II-4-oxo derivatives of the quinoline compound was not affected by the availability of molybdate. This observation indicated a possible role of the trace element molybdenum in the initial hydroxylation at C2. In enzymes, Mo occurs as part of the redox-active co-factor, and all the Mo-enzymes involved in N-heteroatomic compound metabolism, contain a pterin Mo co-factor. The catalyzed reaction involves the transfer of an oxygen atom to or from a substrate molecule in a two-electron redox reaction. The oxygen is supplied by the aqueous solvent. Certainly, the Mo-enzymes play an important role in the initial steps of N-containing heterocycles degradation. [Pg.170]

Fig. 9. Possible electron transfer mechanism for NOS utilizing a pterin radical. The oxy-complex in 2 is shown as the ferric (Fe +)-superoxide complex. The role of the pterin then is to donate an electron to the iron, thus giving the peroxy dianion in 3. The dianion is a potent base that abstracts a proton from the substrate, giving 4. The system is now set up for a peroxidase-like heterolytic cleavage of the 0-0 bond to give the active hydroxylating intermediate in 5 and, finally, the first product in 6. Fig. 9. Possible electron transfer mechanism for NOS utilizing a pterin radical. The oxy-complex in 2 is shown as the ferric (Fe +)-superoxide complex. The role of the pterin then is to donate an electron to the iron, thus giving the peroxy dianion in 3. The dianion is a potent base that abstracts a proton from the substrate, giving 4. The system is now set up for a peroxidase-like heterolytic cleavage of the 0-0 bond to give the active hydroxylating intermediate in 5 and, finally, the first product in 6.
Tetrahydrofolate (THF, 6) is a coenzyme that can transfer Cj residues in different oxidation states. THF arises from the vitamin folic acid (see p. 366) by double hydrogenation of the heterocyclic pterin ring. The Ci units being transferred are bound to N-5, N-10, or both nitrogen atoms. The most important derivatives are ... [Pg.108]

The importance of the dihydro and tetrahydro oxidation states of pterins in biology has stimulated interest in the study of the chemical properties of these compounds, especially with respect to electron-transfer and radical reactions. It has become apparent, perhaps unsurprisingly, that the stability and reactivity of these oxidation states are very sensitive to substituent effects and the much greater stability of the fully conjugated pteridines is most evident. The oxidation of tetrahydropterins and the reduction of dihydropterins have become especially important in the chemistry of nitric oxide production in nature and in oxidative stress but the accumulation of relevant facts has not led so far to a detailed understanding of the chemical property relationships. Relevant information is summarized in the following section. [Pg.923]

The expansion in the power of computers and theoretical methods has made it possible to investigate the mechanism of action of enzymes by combinations of quantum-mechanical and molecular-mechanical calculations. A study of two possible mechanisms for dihydrofolate reductase catalysis was consistent with indirect proton transfer from aspartate to N-5 of the pterin as has been suggested for many years by crystallographic evidence <2003PCB14036>. This conclusion is also consistent with the outcome of a study that directly measured the of the active site aspartate in the Lactobacillus casei enzyme <1999B8038>. Observations of chemical shifts of... [Pg.961]

Tetrahydrobiopterin, another cofactor of amino acid catabolism, is similar to the pterin moiety of tetrahydrofolate, but it is not involved in one-carbon transfers instead it participates in oxidation reactions. We consider its mode of action when we discuss phenylalanine degradation (see Fig. 18-24). [Pg.674]

Figure 2. The ligand common to all molybdenum and tungsten enzymes, MPT, is shown here in several formats (a) in common stick notation (b) as a ball and stick (c) an orientation rotated 90° from view (b) to emphasize the spacial relationship between the pterin plane and the dithiolene-pyran ring portion (d) MGD in common stick notation and for comparison, (e ) FAD, a common electron-transfer prosthetic group. Coordinates for the views in (b) and (c) are taken from the data deposited in the Protein Data Bank (PDB) for the 1.3-A resolution structure of DMSO reductase from Rhodobacter sphaeroides. Figure 2. The ligand common to all molybdenum and tungsten enzymes, MPT, is shown here in several formats (a) in common stick notation (b) as a ball and stick (c) an orientation rotated 90° from view (b) to emphasize the spacial relationship between the pterin plane and the dithiolene-pyran ring portion (d) MGD in common stick notation and for comparison, (e ) FAD, a common electron-transfer prosthetic group. Coordinates for the views in (b) and (c) are taken from the data deposited in the Protein Data Bank (PDB) for the 1.3-A resolution structure of DMSO reductase from Rhodobacter sphaeroides.
While the evidence is undeniable for electron transfer via the pterin system for enzymes in the XO/XDH and AOR families, comparable structural features are not observed in SO. The additional electron-transfer group, the heme, is quite distant from the pterin ring system (Mo Fe 32 A) prohibiting an efficient electron transfer between these cofactors in the solid state. Because a flexible polypeptide chain connects the two domains housing the heme and the Moco, one postulation under investigation is that in solution the heme domain moves to position the heme closer to the pterin system to receive electrons during catalysis. [Pg.524]

Molybdopterin has another function besides participating in electron transfer between the site of catalysis and other electron-acceptor groups. It serves as an anchor for the active site where a multitude of hydrogen bonds between the pterin (and, if present, the dinucleotide) and the protein provide a secure tether for the reactive metal site (17). Evidence for the immobility conferred by the pterin(s) embedded in the protein is found in a comparsion of the DMSOR structures from both Rhodobacter sources. Regardless of the Mo coordination environment, the MGD ligands are nearly superimposable (75). This similarity of pterin structure is most clearly observed in the 1.3-A structure, where the Mo atom dissociated and shifted away from one pterin ligand, which otherwise was unaffected. The nucleotide tails on MGD, MCD, and other derivatives of molybdopterin also contribute to locking the molybdenum catalyst in position. [Pg.527]


See other pages where Pterins transfer is mentioned: [Pg.323]    [Pg.396]    [Pg.404]    [Pg.108]    [Pg.167]    [Pg.256]    [Pg.257]    [Pg.268]    [Pg.273]    [Pg.274]    [Pg.276]    [Pg.277]    [Pg.359]    [Pg.213]    [Pg.285]    [Pg.23]    [Pg.260]    [Pg.261]    [Pg.269]    [Pg.270]    [Pg.175]    [Pg.920]    [Pg.962]    [Pg.467]    [Pg.468]    [Pg.808]    [Pg.882]    [Pg.1340]    [Pg.1459]    [Pg.323]    [Pg.132]    [Pg.215]    [Pg.514]    [Pg.514]    [Pg.524]    [Pg.524]    [Pg.526]    [Pg.526]    [Pg.574]   


SEARCH



Pterin

Pterins

Pterins biological electron transfer

Pterins electron transfer between

© 2024 chempedia.info