Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein electrospray

Blanco-Gonzalez, J. Meija, and A. Sanz-Medel, Anal. Chem. 2005, 77, 5615.] [Pg.478]

Liquid exiting a chromatography column can be converted into the fine mist in panel a by electrospray in which a high voltage is applied between the column and the entrance to a mass spectrometer. Micrometer-size droplets rapidly evaporate, leaving their solutes— including ions— free in the gas phase. [Pg.478]

Electrospray was developed in the 1980s by John B. Fenn, who shared the Nobel Prize in 2002. More than 50 years earlier, Fenn s poor showing on an algebra exam came back with his teacher s comment, Tlon t ever try to be a scientist or engineer.  [Pg.478]

Wall-coated open tubular column (WCOT) [Pg.480]

Solid support coated with stationary liquid phase [Pg.480]


Unlike electrospray, atmospheric pressure chemical ionization does create gaseous ions from neutral analyte molecules. Analyte must have some volatility. For nonvolatile molecules such as sugars and proteins, electrospray can be used. [Pg.490]

The quantitation of small-sized therapeutic proteins or peptides in plasma can be conducted with EC—MS/MS detection of the intact proteins. Electrospray ionization (ESI) is the most widely used ionization technique for quantitative EC—MS/MS analysis of proteins or peptides. There are some occasions where atmospheric pressure chemical ionization (APCI) was used to circumvent matrix effects (Volosov et al., 2001). ESI typically generates multiply-charged protein or peptide ions, depending upon the number of basic charges in the polypeptide backbone. For small proteins, high abundance peaks of multiply... [Pg.616]

Samalikova, M. Grandori, R. Role of opposite charges in protein electrospray ionization mass spectrometry. J. Mass Spectrom. 2003, 38, 941-947. [Pg.531]

Another type of ion is formed almost uniquely by the electrospray inlet/ion source which makes this technique so valuable for examining substances such as proteins that have large relative molecular mass. Measurement of m/z ratios usually gives a direct measure of mass for most mass spectrometry because z = 1 and so m/z = m/1 = m. Values of z greater than one are unusual. However, for electrospray, values of z greater than one (often much greater), are quite coimnonplace. For example, instead of the [M + H]+ ions common in simple Cl, ions in electrospray can be [M + n-H]- where n can be anything from 1 to about 30. [Pg.57]

Although simple solutions can be examined by these electrospray techniques, often for a single substance dissolved in a solvent, straightforward evaporation of the solvent outside the mass spectrometer with separate insertion of the sample is sufficient. This situation is not true for all substances. Peptides, proteins, nucleotides, sugars, carbohydrates, mass organometallics, and many... [Pg.58]

For mixture.s the picture is different. Unless the mixture is to be examined by MS/MS methods, usually it will be necessary to separate it into its individual components. This separation is most often done by gas or liquid chromatography. In the latter, small quantities of emerging mixture components dissolved in elution solvent would be laborious to deal with if each component had to be first isolated by evaporation of solvent before its introduction into the mass spectrometer. In such circumstances, the direct introduction, removal of solvent, and ionization provided by electrospray is a boon and puts LC/MS on a level with GC/MS for mixture analysis. Further, GC is normally concerned with volatile, relatively low-molecular-weight compounds and is of little or no use for the many polar, water soluble, high-molecular-mass substances such as the peptides, proteins, carbohydrates, nucleotides, and similar substances found in biological systems. LC/MS with an electrospray interface is frequently used in biochemical research and medical analysis. [Pg.59]

While electrospray is used for molecules of all molecular masses, it has had an especially marked impact on the measurement of accurate molecular mass for proteins. Traditionally, direct measurement of molecular mass on proteins has been difficult, with the obtained values accurate to only tens or even hundreds of Daltons. The advent of electrospray means that molecular masses of 20,000 Da and more can be measured with unprecedented accuracy (Figure 40.6). This level of accuracy means that it is also possible to identify post-translational modifications of proteins (e.g., glycosylation, acetylation, methylation, hydroxylation, etc.) and to detect mass changes associated with substitution or deletion of a single amino acid. [Pg.291]

A typical electrospray analysis can be completed in 15 min with as little as 1 pmol of protein. An analysis of the cord blood of a baby (Figure 40.6) showed quite clearly that five globins were present, viz., the normal ones (a, (3, Gy, and Ay) and a sickle-cell variant (sickle (3). The last one is easily revealed in the mass spectrum, even at a level of only 4% in the blood analyzed. [Pg.291]

A sample of the protein, horse heart myoglobin, was dissolved in acidified aqueous acetonitrile (1% formic acid in HjO/CHjCN, 1 1 v/v) at a concentration of 20 pmol/1. This sample was injected into a flow of the same solvent passing at 5 pl/min into the electrospray source to give the mass spectrum of protonated molecular ions [M + nH] shown in (a). The measured ra/z values are given in the table (b), along with the number of protons (charges n) associated with each. The mean relative molecular mass (RMM) is 16,951,09 0.3 Da. Finally, the transformed spectrum, corresponding to the true relative molecular mass, is shown in (c) the observed value is close to that calculated (16,951.4), an error of only 0.002%. [Pg.292]

Intact peptides and proteins can be examined by a variety of new techniques, including MS/MS, dynamic FAB, APCI, and electrospray. Large masses of tens of thousands of Daltons can be accurately measured with unprecedented accuracy by electrospray. [Pg.294]

However, interpretation of, or even obtaining, the mass spectrum of a peptide can be difficult, and many techniques have been introduced to overcome such difficulties. These techniques include modifying the side chains in the peptide and protecting the N- and C-terminals by special groups. Despite many advances made by these approaches, it is not always easy to read the sequence from the mass spectrum because some amide bond cleavages are less easy than others and give little information. To overcome this problem, tandem mass spectrometry has been applied to this dry approach to peptide sequencing with considerable success. Further, electrospray ionization has been used to determine the molecular masses of proteins and peptides with unprecedented accuracy. [Pg.333]

Electrospray ionization (ESI) produces a series of multicharged ions that can be transformed into an accurate molecular mass for proteins with masses of tens of thousands. [Pg.417]

Electrospray ionization mass spectrometry (ESI-MS) is an analytical method for mass determination of ionized molecules. It is a commonly used method for soft ionization of peptides and proteins in quadmpole, ion-trap, or time-of-flight mass spectrometers. The ionization is performed by application of a high voltage to a stream of liquid emitted from a capillaty. The highly charged droplets are shrunk and the resulting peptide or protein ions are sampled and separated by the mass spectrometer. [Pg.458]

Peptide mass fingeiprinting (PMF) is a mass spectrometry based method for protein identification. The protein is cleaved by an enzyme with high specificity (trypsin, Lys-C, Asp-N, etc.) or chemical (CNBr). The peptide mixture generated is analyzed by matrix-assisted laser desorp-tion/ionization (MALDI) or electrospray ionization (ESI)... [Pg.936]

Figure 4.19 Electrospray spectra of a protein (a) after transformation, and (b) after maximum entropy processing. From applications literature published by Micromass UK Ltd, Manchester, UK, and reproduced with permission. Figure 4.19 Electrospray spectra of a protein (a) after transformation, and (b) after maximum entropy processing. From applications literature published by Micromass UK Ltd, Manchester, UK, and reproduced with permission.
Electrospray is an unusual mass spectrometry technique in that it allows the study of the three-dimensional structure of compounds, particularly proteins, in solution as it is believed that this is relatively unchanged when ions are transferred to the vapour phase. This type of application will be discussed in more detail in Chapter 5 but attention is drawn at this point to the previous comments regarding the effect that the HPLC conditions, such as pH, may have on the appearance of an electrospray spectrum and the conformational deductions that may be made from them. [Pg.179]

The polarity and thermal instability of biopolymers, together with the almost exclusive formation of singly charged ions renders APCl an inappropriate ionization technique for their study. Much of the early work involving electrospray ionization, on the other hand, was connected with the analysis of this type of molecule, in particular determining the molecular weight of proteins for which it is particularly effective. [Pg.198]

Figure 5.6 Positive-ion electrospray spectrum obtained from the major component in the LC-MS analysis of a purified recombinant 62 kDa protein using a Cig microbore 50 X 1 mm column and a flow rate of 50 p.lmin . The starting buffer (buffer A ) was 0.1% TEA in water, while the gradient buffer (buffer B ) consisted of 0.1% TEA in acetonitrile-water (9 1 vol/vol). The running conditions consisted of 0% B for 5 min, followed by a linear gradient of 100% B for 55 min. Reprinted from J. Chromatogr., B, 685, McAtee, C. P., Zhang, Y., Yarbough, P. O., Fuerst, T. R., Stone, K. L., Samander, S. and Williams, K. R., Purification and characterization of a recombinant hepatitis E protein vaccine candidate by liquid chromatography-mass spectrometry , 91-104, Copyright (1996), with permission from Elsevier Science. Figure 5.6 Positive-ion electrospray spectrum obtained from the major component in the LC-MS analysis of a purified recombinant 62 kDa protein using a Cig microbore 50 X 1 mm column and a flow rate of 50 p.lmin . The starting buffer (buffer A ) was 0.1% TEA in water, while the gradient buffer (buffer B ) consisted of 0.1% TEA in acetonitrile-water (9 1 vol/vol). The running conditions consisted of 0% B for 5 min, followed by a linear gradient of 100% B for 55 min. Reprinted from J. Chromatogr., B, 685, McAtee, C. P., Zhang, Y., Yarbough, P. O., Fuerst, T. R., Stone, K. L., Samander, S. and Williams, K. R., Purification and characterization of a recombinant hepatitis E protein vaccine candidate by liquid chromatography-mass spectrometry , 91-104, Copyright (1996), with permission from Elsevier Science.
The effect of the buffer on the efficiency of electrospray ionization was mentioned earlier in Section 4.7.1. This is a good example of the dramatic effect that this may have - good chromatographic separation and ionization efficiency with formic, acetic and propionic acids, and good separation, although with complete suppression of ionization, with trifluoroacetic acid (TFA), the additive used for the protein application described previously. Post-column addition of propionic acid to the mobile phase containing TFA has been shown to reduce, or even... [Pg.204]

Table 5.7 Theoretically predicted polypeptides from the trypsin digestion of S-lacto-globulin (/3LG) . Reprinted from J. Chromatogr., A, 763, Turula, V. E., Bishop, R. T., Ricker, R. D. and de Haseth, J. A., Complete structure elucidation of a globular protein by particle beam liquid chromatography-Fourier transform infrared spectrometry and electrospray liquid chromatography-mass spectrometry - Sequence and conformation of /3-lactoglobulin , 91-103, Copyright (1997), with permission from Elsevier Science... Table 5.7 Theoretically predicted polypeptides from the trypsin digestion of S-lacto-globulin (/3LG) . Reprinted from J. Chromatogr., A, 763, Turula, V. E., Bishop, R. T., Ricker, R. D. and de Haseth, J. A., Complete structure elucidation of a globular protein by particle beam liquid chromatography-Fourier transform infrared spectrometry and electrospray liquid chromatography-mass spectrometry - Sequence and conformation of /3-lactoglobulin , 91-103, Copyright (1997), with permission from Elsevier Science...
The molecular mass of the protein was redetermined by infusing a 5-10 pmolp.l solution of the protein in 50% aqueous acetonitrile containing 0.2% formic acid at a flow rate of 6 p,lmin into an electrospray source. The scan rate employed on the mass spectrometer was from m/z 60 to m/z 1800 in 12 s. This is a relatively slow scan speed which will lead to a more precise molecular weight determination. Scan speeds of this order may be, and indeed should be, utilized for infusion experiments if sufficient sample is available but it is unlikely to be feasible when chromatographic separations, particularly those involving capillary columns, are employed because of the restriction imposed by the chromatographic peak width (see Section 3.5.2.1 above). [Pg.217]

The raw electrospray spectrum obtained is shown in Figure 5.14. Maximum entropy processing of these data yielded the spectrum shown in Figure 5.15, which shows the presence of two species with molecular masses of 14293.6 and 14 309.6 Da, with the latter being attributed to partial oxidation of the parent protein. [Pg.217]

Figure 5.14 Electrospray spectrum of holocytochrome c". Reprinted from Biochim. Bio-phys. Acta, 1412, Klarskov, K., Leys, D., Backers, K., Costa, H. S., Santos, H., Guisez, Y. and Van Beeumen, 1. 1., Cytochrome c" from the obligate methylotroph Methy-lophilus methylotrophus, an unexpected homolog of sphaeroides heme protein from the phototroph Rhodobacter sphaeroides", 47-55, Copyright (1999), with permission from Elsevier Science. Figure 5.14 Electrospray spectrum of holocytochrome c". Reprinted from Biochim. Bio-phys. Acta, 1412, Klarskov, K., Leys, D., Backers, K., Costa, H. S., Santos, H., Guisez, Y. and Van Beeumen, 1. 1., Cytochrome c" from the obligate methylotroph Methy-lophilus methylotrophus, an unexpected homolog of sphaeroides heme protein from the phototroph Rhodobacter sphaeroides", 47-55, Copyright (1999), with permission from Elsevier Science.
MALDI-ToF is a technique that allows the molecular weights of proteins and peptides to be determined. It is less susceptible to suppression effects than electrospray ionization and thus is able to be used for the direct analysis of mixtures. In the case of a crude tryptic digest, MALDI-ToF will provide a molecular weight profile of the polypeptides present without the analysis time being extended by the need to use some form of chromatographic separation. [Pg.223]

The electrospray spectrum from the corresponding chromatographic response in the LC-MS analysis of the tryptic digest of the protein after reaction with the inhibitor is shown in Figure 5.24. In addition to the three species found in the digest of the parent protein, two additional polypeptides, with molecular weights of 2439.36 zb 0.07 and 2457.43 zb 0.02 Da, i.e. 70 and 88 Da above... [Pg.229]


See other pages where Protein electrospray is mentioned: [Pg.478]    [Pg.478]    [Pg.55]    [Pg.60]    [Pg.291]    [Pg.198]    [Pg.139]    [Pg.139]    [Pg.253]    [Pg.272]    [Pg.1029]    [Pg.165]    [Pg.170]    [Pg.188]    [Pg.218]    [Pg.219]    [Pg.221]    [Pg.227]    [Pg.229]    [Pg.230]   
See also in sourсe #XX -- [ Pg.478 ]




SEARCH



Electrospray Ionization in Protein Studies

Electrospray ionization mass spectrometry intact proteins

Electrospray ionization mass spectrometry recombinant proteins

Electrospray ionization protein separation

Electrospray protein analysis

Electrospray-ionization protein adducts

Gas and Liquid Chromatography Protein Electrospray

Proteins electrospray ionization mass spectrome

Proteins electrospray ionization mass spectrometry

Proteins electrospray mass spectra

© 2024 chempedia.info