Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein calcium-binding membran

Calcification by bacteria. Lime-water application seems not to guarantee sufficient consolidation. Precipitation of calcite by microorganisms is known to occur in freshwater and marine environments, as well as in soil, and this led to trials of bioremediation on heritage surfaces. Very recently, approaches using calcification due to bacterial activity have even been carried out particularly on stone and architectural surfaces (see page 236). Remediation by several bacteria was shown to result in the formation of newly developed calcite precipitations. For this, chemoorganotrophic bacteria, as well as nutrients, were supplied to the surfaces. Up to now the role of bacteria is not completely understood, however, studies on marine bacteria revealed three main mechanisms (i) calcium-binding membrane proteins, (ii) ionophores, and (iii) extracellular materials on cell surface. [Pg.259]

These cytosolic proteins contain five EF-hand domains and are able to translocate to the plasma membrane upon calcium binding [5]. In addition to the EF-hand domains, these proteins also have a hydrophobic glycine/proline-rich domain, important for their translocation to the membrane. To date five members of this... [Pg.293]

Fig. 5 Proposed signal transduction mechanisms that stimulate the pheromone biosynthetic pathway in Helicoverpa zea and Bombyx mori. It is proposed that PBAN binds to a G protein-coupled receptor present in the cell membrane that upon PBAN binding will induce a receptor-activated calcium channel to open causing an influx of extracellular calcium. This calcium binds to calmodulin and in the case of B. mori will directly stimulate a phosphatase that will dephosphorylate and activate a reductase in the biosynthetic pathway. In H. zea the calcium-calmodulin will activate adenylate cyclase to produce cAMP that will then act through kinases and/or phosphatases to stimulate acetyl-CoA carboxylase in the biosynthetic pathway... Fig. 5 Proposed signal transduction mechanisms that stimulate the pheromone biosynthetic pathway in Helicoverpa zea and Bombyx mori. It is proposed that PBAN binds to a G protein-coupled receptor present in the cell membrane that upon PBAN binding will induce a receptor-activated calcium channel to open causing an influx of extracellular calcium. This calcium binds to calmodulin and in the case of B. mori will directly stimulate a phosphatase that will dephosphorylate and activate a reductase in the biosynthetic pathway. In H. zea the calcium-calmodulin will activate adenylate cyclase to produce cAMP that will then act through kinases and/or phosphatases to stimulate acetyl-CoA carboxylase in the biosynthetic pathway...
Calumin Membrane-spanning calcium-binding protein involved in Ca2+-handling and signaling in the endoplasmic reticulum (368)... [Pg.290]

CIBl = Calcium- and integrin-binding protein DGBP = D-Galactose binding protein Pmrl = plasma membrane ATP-ase related protein. [Pg.291]

The first molecule, the Ca2+ channel, is required for coupling at the triad. Skeletal muscle contains higher concentrations of this L-type Ca2+ channel that can be accounted for on the basis of measured voltage-dependent Ca2+ influx because much of the Ca2+ channel protein in the T-tubular membrane does not actively gate calcium ion movement but, rather, acts as a voltage transducer that links depolarization of the T-tubular membrane to Ca2+ release through a receptor protein in the SR membrane. The ryanodine receptor mediates sarcoplasmic reticulum Ca2+ release. The bar-like structures that connect the terminal elements of the SR with the T-tubular membrane in the triad are formed by a large protein that is the principal pathway for Ca2+ release from the SR. This protein, which binds the... [Pg.718]

ATP is used not only to power muscle contraction, but also to re-establish the resting state of the cell. At the end of the contraction cycle, calcium must be transported back into the sarcoplasmic reticulum, a process which is ATP driven by an active pump mechanism. Additionally, an active sodium-potassium ATPase pump is required to reset the membrane potential by extruding sodium from the sarcoplasm after each wave of depolarization. When cytoplasmic Ca2- falls, tropomyosin takes up its original position on the actin and prevents myosin binding and the muscle relaxes. Once back in the sarcoplasmic reticulum, calcium binds with a protein called calsequestrin, where it remains until the muscle is again stimulated by a neural impulse leading to calcium release into the cytosol and the cycle repeats. [Pg.236]

During the last ten years, it has become apparent that calcium-dependent papain-like peptidases called calpains (EC 3.4.22.17) represent an important intracellular nonlysosomal enzyme system [35][36], These enzymes show limited proteolytic activity at neutral pH and are present in virtually every eukaryotic cell type. They have been found to function in specific proteolytic events that alter intracellular metabolism and structure, rather than in general turnover of intracellular proteins. Calpains are composed of two nonidentical subunits, each of which contains functional calcium-binding sites. Two types of calpains, i.e., /i-calpain and m-calpain (formerly calpain I and calpain II, respectively), have been identified that differ in their Ca2+ requirement for activation. The activity of calpains is regulated by intracellular Ca2+ levels. At elevated cytoplasmic calcium concentrations, the precursor procal-pain associates with the inner surface of the cell membrane. This interaction seems to trigger autoproteolysis of procalpain, and active calpain is released into the cytoplasm [37]. [Pg.40]

Calpains are enzymes that consist of a proteolytic subunit and a calcium binding subunit. In the cytosol, these enzymes are inactive due to binding of the inhibitory protein, calpastatin. Attachment to the cell membrane removes this inhibition and activation occurs at low concentrations of Csi ions. The enzymes hydrolyse proteins as far as peptides complete hydrolysis requires peptidases, which are also present in the cytosol. [Pg.155]

Uterine relaxation is mediated in part through inhibition of MLCK. This inhibition results from the phosphorylation of MLCK that follows the stimulation of myometrial (3-adrenoceptors relaxation involves the activity of a cyclic adenosine monophosphate (cAMP) mediated protein kinase, accumulation of Ca++ in the sarcoplasmic reticulum, and a decrease in cytoplasmic Ca. Other circulating substances that favor quiescence of uterine smooth muscle include progesterone, which increases throughout pregnancy, and possibly prostacyclin. Progesterone s action probably involves hyperpolarization of the muscle cell membrane, reduction of impulse conduction in muscle cells, and increased calcium binding to the sarcoplasmic reticulum. [Pg.718]

The mechanism of action of the vitamin D metabolites remains under active investigation. However, calcitriol is well established as the most potent agent with respect to stimulation of intestinal calcium and phosphate transport and bone resorption. Calcitriol appears to act on the intestine both by induction of new protein synthesis (eg, calcium-binding protein and TRPV6, an intestinal calcium channel) and by modulation of calcium flux across the brush border and basolateral membranes by a means that does not require new protein synthesis. The molecular action of calcitriol on bone has received less attention. However, like PTH, calcitriol can induce RANK ligand in osteoblasts and proteins such as osteocalcin, which may regulate the mineralization process. The metabolites 25(OH)D and 24,25(OH)2D are far less... [Pg.959]

A variety of other calcium transport systems are associated with Ca21-activated ATPases. The extraembryonic structure, the chorioallantoic membrane, of the chick embryo is responsible for the translocation of over 120 mg of eggshell calcium into (he embryo during development. The enzyme responsible for this is a (Ca2+, Mg2+)-ATPase with Km values for Ca2+ of 30 p,mol dm-3 and 0.3 mmol dm-3, and a molecular weight of 170 000. The enzyme can be crossiinked and co-isolated with a calcium-binding protein.158 Transport of Ca2+ is also associated with (Ca2+, Mg2+)-ATPases in neutrophil plasma membranes,159 transverse tubule membranes from rabbit skeletal muscle,160 rabbit myocardial membrane,161 endoplasmic reticulum,162 sar-colemma,163 brain microsomes,164 the Golgi apparatus165 and rat liver plasma membranes.166... [Pg.568]


See other pages where Protein calcium-binding membran is mentioned: [Pg.789]    [Pg.789]    [Pg.7]    [Pg.24]    [Pg.301]    [Pg.489]    [Pg.971]    [Pg.1175]    [Pg.23]    [Pg.255]    [Pg.14]    [Pg.508]    [Pg.826]    [Pg.303]    [Pg.348]    [Pg.369]    [Pg.148]    [Pg.255]    [Pg.294]    [Pg.299]    [Pg.612]    [Pg.348]    [Pg.281]    [Pg.49]    [Pg.36]    [Pg.174]    [Pg.25]    [Pg.48]    [Pg.15]    [Pg.20]    [Pg.45]    [Pg.130]    [Pg.315]    [Pg.316]    [Pg.571]    [Pg.564]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



Calcium binding

Calcium-binding proteins

Protein calcium

Proteins, membrane binding

© 2024 chempedia.info