Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protective steels

Fig. 11. Use of mst inhibitor to protect steel surface from attack by moisture. Fig. 11. Use of mst inhibitor to protect steel surface from attack by moisture.
Note that zinc anodes are often used to protect steel and other relatively noble metals cathodically. In this case, the fasteners were acting as unintentional sacrificial anodes, protecting the stainless steel. Simple solutions to the problem would be to insulate the fasteners from the stainless steel electrically or to use stainless steel fasteners. [Pg.367]

Plain carbon steels rust in wet environments and oxidise if heated in air. But if chromium is added to steel, a hard, compact film of CrjOj will form on the surface and this will help to protect the underlying metal. The minimum amount of chromium needed to protect steel is about 13%, but up to 26% may be needed if the environment is particularly hostile. The iron-chromium system is the basis for a wide range of stainless steels. [Pg.129]

Cathodic protection can be used to protect steel in concrete (see Chapter 19). There is no fear of damage by H2 evolution due to porosity of the mortar. Local corrosion attack can be observed under extreme conditions due to porosity (water/ cement ratio = 1) and polarization (f/jq = -0.98 V) with portland cement but not with blast furnace cement, corresponding to field IV in Fig. 2-2 [53]. However, such conditions do not occur in practice. [Pg.174]

Figure 19-1 shows the experimental setup with the position of the steel test pieces and the anodes. The anodes were oxide-coated titanium wires and polymer cable anodes (see Sections 7.2.3 and 7.2.4). The mixed-metal experimental details are given in Table 19-1. The experiments were carried out galvanostatically with reference electrodes equipped to measure the potential once a day. Thus, contamination of the concrete by the electrolytes of the reference electrodes was excluded. The potentials of the protected steel test pieces are shown in Table 19-1. The potentials of the anodes were between U(2u-cuso4 = -1-15 and -1.35 V. [Pg.429]

Table 19-1 Protection current densities and potentials of the cathodically protected steel test pieces in Fig. 19-1... Table 19-1 Protection current densities and potentials of the cathodically protected steel test pieces in Fig. 19-1...
Underground transmission lines are preferred in places where rights-of-way are severely limited because they can be placed much closer together than overhead lines. They are also favored for aesthetic reasons. They may be directly buried in the soil, buried in protective steel or plastic pipes, or placed in subterranean tunnels. The conductors are usually contained within plastic insulation encased in a thin metallic sheath. The conductors enclosed in steel pipes may be immersed in oil, which may be circulated for cooling purposes. For all types of underground lines, the capacitance is higher than for overhead lines, and the power transfer capability is usually limited by the resistive losses instead of the inductance. Wliile not exposed to environmental... [Pg.437]

Corrosive species in the atmospheres include water, salts and gases. Clean atmospheres contain little other than oxygen, nitrogen, water vapor and a small quantity of carbon dioxide. These species are virtually non-corrosive to any of the common constructional materials for plant at normal temperatures. Steel is susceptible to corrosion in even fairly clean air where water can exist as liquid. For plant operating at temperatures up to approximately 100°C coatings are employed to protect steel if required. In clean air corrosion rates are low, and corrosion is primarily a cosmetic problem, although it may be necessary to prevent mst staining of nearby materials. [Pg.902]

Saponification Paints are most commonly used to protect steel from corrosion by seawater in marine applications and soil in the case of buried structures. Additional protection is often supplied by the application of cathodic protection to the steel. Any paint coating used in conjunction with cathodic protection must be resistant to the alkali which is produced on the steel at defect sites in the coating. The amount of alkali generated depends on the potential to which the steel is polarized. Some paint binders such as alkyds and vinyl ester are very susceptible to saponification, and should not be used on cathodically protected structures. Cathodic disbondment testing should be undertaken if the relevant information is not available. [Pg.909]

Vapor phase inhibitors These are used for the temporary protection of new plant in transit or prior to commissioning. Volatile corrosion inhibitors such as cyclohexylamine derivatives are used. The plant must be sealed or contained to prevent rapid loss of the inhibitor. Sachets of these materials are placed in packing cases. Papers impregnated with them are available for wrapping steel items. These inhibitors are used primarily to protect steel. [Pg.910]

Zinc should give a potential of -1 - 05 V vs. CU/CUSO4 and should have a driving potential of about -0-25 V with respect to cathodically protected steel. Zinc is therefore sufficiently negative to act as a sacrificial anode, and its first use for such purposes was on the copper-sheathed hulls of warships more than a century ago. The first attempts to fit zinc anodes to steel hulls, however, were a complete failure, for the sole reason that it had not been realised that the purity of the zinc was of paramount importance. The presence of even small amounts of certain impurities leads to the formation of dense adherent films, which cause the anodes to become inactive. [Pg.822]

Cathodic Current Densities for Protecting Steel Examples of current density requirements for the protection of steel (to achieve a steel potential of —0-8 V vs. Ag/AgCl/seawater) are given in Tables 10.13 and 10.14. It should be realised that the current demand of a structure will be influenced by, inter alia, temperature, degree of aeration, flow rate, protective scales, burial status, presence of bacteria and salinity. [Pg.152]

Aluminium diffusion calorising, aluminisingY protects steels against oxidation at elevated temperatures, and the more recently developed processes for aluminising and chromaluminising superalloys are widely used to increase the life and operating temperature of aircraft gas turbine vanes, etc. [Pg.397]

Sometimes it is possible to add corrosion inhibitors to an aqueous product that is to remain in contact with tinned steel. The normal inhibitors used for protecting steel, e.g. benzoate, nitrite, chromate, etc. are suitable, provided that they are compatible with the product and that the pH is not raised above 10. In a closed container with an air-space, such inhibitors will not protect the zone above the water-line, and possibly not the water-line zone itself, against condensate. Volatile inhibitors have been used to give protection to these areas. [Pg.503]

Laister and Benham have shown that under more arduous conditions (immersion for 6 months in sea-water) a minimum thickness of 0-025 mm of silver is required to protect steel, even when the silver is itself further protected by a thin rhodium coating. In similar circumstances brass was completely protected by 0 012 5 mm of silver. The use of an undercoating deposit of intermediate electrode potential is generally desirable when precious metal coatings are applied to more reactive base metals, e.g. steel, zinc alloys and aluminium, since otherwise corrosion at discontinuities in the coating will be accelerated by the high e.m.f. of the couple formed between the coating and the basis metal. The thickness of undercoat may have to be increased substantially above the values indicated if the basis metal is affected by special defects such as porosity. [Pg.559]

Finally, it is necessary to point out that although a particular method of corrosion control may be quite effective for the structure under consideration it can introduce unforeseen corrosion hazards elsewhere. Perhaps the best example is provided by cathodic protection in which stray currents (interaction) result in the corrosion of an adjacent unprotected structure or of steel-reinforcement bars embedded in concrete a further hazard is when the cathodically protected steel is fastened with high-strength steel bolts, since cathodic protection of the tatter could result in hydrogen absorption and hydrogen cracking. [Pg.1461]

The new continuous casting processes, in contrast to ingot cast products, provide tin mill products which are exceptionally clean and formable. The deoxidizing processes required for continuous casting involve either aluminum or silicon killing, which adds aluminum or silicon to the steel. Experience with type D steels indicates that the added aluminum will not cause a corrosion problem. Laubscher and Weyandt (18) have shown that the silicon found in silicon killed, continuous cast, heavily coated ETP will not adversely affect the corrosion performance of plain cans packed with mildly acid food products in which tin usually protects steel. The data on enameled cans is not definitive. Additional published data are required to determine whether or not silicon actually reduces the performance of enameled cans made from enameled, heavily coated, silicon killed, continuous cast ETP. [Pg.11]

Consequentiy, a zinc coating oxidizes preferentiaiiy and protects steel from corrosion. Zinc coatings are applied in severai ways by immersion in moiten zinc, by paint containing powdered zinc, or by electroplating. [Pg.1478]


See other pages where Protective steels is mentioned: [Pg.120]    [Pg.120]    [Pg.349]    [Pg.283]    [Pg.157]    [Pg.160]    [Pg.164]    [Pg.9]    [Pg.221]    [Pg.449]    [Pg.386]    [Pg.355]    [Pg.893]    [Pg.823]    [Pg.1234]    [Pg.1235]    [Pg.1323]    [Pg.118]    [Pg.226]    [Pg.274]    [Pg.423]    [Pg.450]    [Pg.482]    [Pg.499]    [Pg.594]    [Pg.706]    [Pg.725]    [Pg.481]    [Pg.530]    [Pg.292]    [Pg.1350]    [Pg.198]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Anodic protection of steel

Cathodic Protection of Steel in Concrete

Cathodic protection The connection active metal, such as magnesium, to steel

Cathodic protection continued steel

Cathodic protection of reinforcing steel

Cathodic protection of steel

Cathodic protection steel pipeline

Cold-rolled steel corrosion protection

Evaluating the corrosion protection of steel and stainless steels using REM compounds

How Zinc Can Protect Steel

Processing facilities structural steel protection

Protection of Cold-Rolled Steel and Pure Iron

Protective Coatings for Ferritic Stainless Steel Interconnects

Protectively coated steels, bonding

Stainless steels anodic protection

Stainless steels protective film

Standards and guidance documents for cathodic protection of steel in concrete

Steel cathodic protection

Steel constructions protection

Steel corrosion protection

Steel fire protection

Steel pipes, cathodic protection

Steel protection

Steel reinforcement protection

Steel, protection methods using zinc

Steels corrosion protection methods

Structural steel protection

Structural steel protection, processing

© 2024 chempedia.info