Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propylene bismuth-molybdate

Ammoxidation of propylene Bismuth molybdates, uranyl antimonate... [Pg.517]

In 1957 Standard Oil of Ohio (Sohio) discovered bismuth molybdate catalysts capable of producing high yields of acrolein at high propylene conversions (>90%) and at low pressures (12). Over the next 30 years much industrial and academic research and development was devoted to improving these catalysts, which are used in the production processes for acrolein, acryUc acid, and acrylonitrile. AH commercial acrolein manufacturing processes known today are based on propylene oxidation and use bismuth molybdate based catalysts. [Pg.123]

Many key improvements and enhancements to the bismuth molybdate based propylene oxidation catalysts have occurred over the past thirty years. These are outlined in the following tabulation. [Pg.123]

Fig. 2. Mechanism of selective ammoxidation and oxidation of propylene over bismuth molybdate catalysts. (31). Fig. 2. Mechanism of selective ammoxidation and oxidation of propylene over bismuth molybdate catalysts. (31).
The first catalysts used commercially to convert the propylene with high selectivity were mixed oxides of bismuth and molybdenum, referred to as bismuth molybdates. Improved catalysts consisting of a number of soHd phases have been developed, with each generation becoming more compHcated than its predecessor. Among the catalysts cited in a patent is the following Co gNi 2"Fe 3Bi (Mo0 22 Si02 with some P and K (88). Sihca is the... [Pg.181]

These enable temperature control with built-in exchangers between the beds or with pumparound exchangers. Converters for ammonia, 80.3, cumene, and other processes may employ as many as five or six beds in series. The Sohio process for vapor-phase oxidation of propylene to acrylic acid uses hvo beds of bismuth molybdate at 20 to 30 atm (294 to 441 psi) and 290 to 400°C (554 to 752°F). Oxidation of ethylene to ethylene oxide also is done in two stages with supported... [Pg.2102]

Much work has been invested to reveal the mechanism by which propylene is catalytically oxidized to acrolein over the heterogeneous catalyst surface. Isotope labeling experiments by Sachtler and DeBoer revealed the presence of an allylic intermediate in the oxidation of propylene to acrolein over bismuth molybdate. In these experiments, propylene was tagged once at Ci, another time at C2 and the third time at C3. [Pg.215]

Another industrially important reaction of propylene, related to the one above, is its partial oxidation in the presence of ammonia, resulting in acrylonitrile, H2C=CHCN. This ammoxidation reaction is also catalyzed by mixed metal oxide catalysts, such as bismuth-molybdate or iron antimonate, to which a large number of promoters is added (Fig. 9.19). Being strongly exothermic, ammoxidation is carried out in a fluidized-bed reactor to enable sufficient heat transfer and temperature control (400-500 °C). [Pg.373]

In the case of selective oxidation catalysis, the use of spectroscopy has provided critical Information about surface and solid state mechanisms. As Is well known( ), some of the most effective catalysts for selective oxidation of olefins are those based on bismuth molybdates. The Industrial significance of these catalysts stems from their unique ability to oxidize propylene and ammonia to acrylonitrile at high selectivity. Several key features of the surface mechanism of this catalytic process have recently been descrlbed(3-A). However, an understanding of the solid state transformations which occur on the catalyst surface or within the catalyst bulk under reaction conditions can only be deduced Indirectly by traditional probe molecule approaches. Direct Insights Into catalyst dynamics require the use of techniques which can probe the solid directly, preferably under reaction conditions. We have, therefore, examined several catalytlcally Important surface and solid state processes of bismuth molybdate based catalysts using multiple spectroscopic techniques Including Raman and Infrared spectroscopies, x-ray and neutron diffraction, and photoelectron spectroscopy. [Pg.27]

Selective oxidation and ammoxldatlon of propylene over bismuth molybdate catalysts occur by a redox mechanism whereby lattice oxygen (or Isoelectronlc NH) Is Inserted Into an allyllc Intermediate, formed via or-H abstraction from the olefin. The resulting anion vacancies are eventually filled by lattice oxygen which originates from gaseous oxygen dlssoclatlvely chemisorbed at surface sites which are spatially and structurally distinct from the sites of olefin oxidation. Mechanistic details about the... [Pg.28]

The structure of the single phase bismuth-iron molybdate compound of composition Bl3FeMo20.2 related to the scheellte structure of Bi2Mo30-2( ). It is reported(, ) that the catalytic activity and selectivity of bismuth-iron molybdate for propylene oxidation and ammoxidatlon is not greater than that of bismuth molybdate. [Pg.29]

The following data given in Tables 16.15, 16.16 and 16.17 on the oxidation of propylene over bismuth molybdate catalyst were obtained at three temperatures, 350,375, and 390°C (Watts, 1994). [Pg.297]

Figure 11.26 Plot of the position sensitivity of the degree of conversion for a set of 48 bismuth-molybdate catalysts (same batch) in propylene to acrolein conversion in a Stage II 48-fold-screening reactor (reaction conditions 2% hydrocarbon in air at GHSV of 3000 h-1, column no. 8 contains only inert carrier material). Figure 11.26 Plot of the position sensitivity of the degree of conversion for a set of 48 bismuth-molybdate catalysts (same batch) in propylene to acrolein conversion in a Stage II 48-fold-screening reactor (reaction conditions 2% hydrocarbon in air at GHSV of 3000 h-1, column no. 8 contains only inert carrier material).
Three well known examples of processes employing fluidised-bed operations are the oxidations of naphthalene and xylene to phthalic anhydride using a supported V2O5 catalyst and ammoxidation of propylene utilising a mixed oxide composition containing bismuth molybdate. Typically, this latter reaction is executed by passing a mixture of ammonia, air and propylene to a fluidised bed operating at about 0.2 MPa pressure, 400—500°C and a few seconds contact time between gas and fluidised catalyst peirticles. [Pg.193]

Acrolein Production. Adams et al. [/. Catalysis, 3,379 (1964)] studied the catalytic oxidation of propylene on bismuth molybdate catalyst to form acrolein. With a feed of propylene and oxygen and reaction at 460°C, the following three reactions occur. [Pg.252]

Mechanisms There is a derth of knowledge about the mechanisms operative in selective oxidation reactions. The only exceptions are the reactions of ethylene to ethylene oxide on supported silver catalysts and of propylene to acrolein on bismuth molybdate type catalysts. For the latter, it is well established through isotopic labeling experiments that a symmetric allyl radical is an intermediate in the reaction and that its formation is rate-determining. Many studies simply extrapolate the results substantiated for this case to other reactions. New ideas on mechanisms are presented by Oyama, et oL, Parmaliana, et aL, and Laszlo. [Pg.12]

Light hydrocarbons consisting of oxygen or other heteroatoms are important intermediates in the chemical industry. Selective hydrocarbon oxidation of alkenes progressed dramatically with the discovery of bismuth molybdate mixed-metal-oxide catalysts because of their high selectivity and activity (>90%). These now form the basis of very important commercial multicomponent catalysts (which may contain mixed metal oxides) for the oxidation of propylene to acrolein and ammoxidation with ammonia to acrylonitrile and to propylene oxide. [Pg.101]

These results suggest that the (101) superstructure observed on the (001) -phase at the catalyst s operating temperature is closely related to Bi2M02O9. A quantification of the microanalysis of the jS-preparation shows a Bi-deficiency. Similar results are observed in the reaction of the a-phase in propylene. In a C3 H6-O2 mixture under working conditions both phases show the presence of this superstructure similar to the jS-structure. The ETEM results are consistent with XPS and Raman data which show that the surface structure of the active bismuth molybdate is close to the jS-phase and that the jS-phase is more active (Matsurra et al 1980, Burrington et al 1983). In these studies dramatic increases in the activity... [Pg.105]

Among the oxide catalysts, bismuth molybdates that catalyse selective oxidation and ammoxidation of propylene to yield acrolein and acrylonitrile have received considerable attention (Grasselli Burrington, 1981) ... [Pg.523]

At lower temperatures the Mars-van Krevelen mechanism no longer applies. Sancier et al. (440) studied propylene oxidation in the presence of 1802 over bismuth molybdate and found that the acrolein product contained 180 and not exclusively leO from the oxide lattice in contrast with results obtained by Keulks and co-workers (441, 442) at higher temperatures. This lower-temperature oxidation must involve adsorbed oxygen in some form but the nature is not clear. It is now accepted that not all these oxidation reactions do involve lattice oxygen (442,443). [Pg.121]

Acrolein and Acrylic Acid. Acrolein and acrylic acid are manufactured by the direct catalytic air oxidation of propylene. In a related process called ammoxida-tion, heterogeneous oxidation of propylene by oxygen in the presence of ammonia yields acrylonitrile (see Section 9.5.3). Similar catalysts based mainly on metal oxides of Mo and Sb are used in all three transformations. A wide array of single-phase systems such as bismuth molybdate or uranyl antimonate and multicomponent catalysts, such as iron oxide-antimony oxide or bismuth oxide-molybdenum oxide with other metal ions (Ce, Co, Ni), may be employed.939 The first commercial process to produce acrolein through the oxidation of propylene, however, was developed by Shell applying cuprous oxide on Si-C catalyst in the presence of I2 promoter. [Pg.510]

During the history of a half century from the first discovery of the reaction (/) and 35 years after the industrialization (2-4), these catalytic reactions, so-called allylic oxidations of lower olefins (Table I), have been improved year by year. Drastic changes have been introduced to the catalyst composition and preparation as well as to the reaction process. As a result, the total yield of acrylic acid from propylene reaches more than 90% under industrial conditions and the single pass yield of acrylonitrile also exceeds 80% in the commercial plants. The practical catalysts employed in the commercial plants consist of complicated multicomponent metal oxide systems including bismuth molybdate or iron antimonate as the main component. These modern catalyst systems show much higher activity and selectivity... [Pg.233]

Fig. I. Mechanism of selective oxidation of propylene to acrolein over bismuth molybdate catalyst by Burrington et al. (19). Fig. I. Mechanism of selective oxidation of propylene to acrolein over bismuth molybdate catalyst by Burrington et al. (19).
In spite of the accumulated mechanistic investigations, it still seems difficult to explain why multicomponent bismuth molybdate catalysts show much better performances in both the oxidation and the ammoxidation of propylene and isobutylene. The catalytic activity has been increased almost 100 times compared to the simple binary oxide catalysts to result in the lowering of the reaction temperatures 60 80°C. The selectivities to the partially oxidized products have been also improved remarkably, corresponding to the improvements of the catalyst composition and reaction conditions. The reaction mechanism shown in Figs. 1 and 2 have been partly examined on the multicomponent bismuth molybdate catalysts. However, there has been no evidence to suggest different mechanisms on the multicomponent bismuth molybdate catalysts. [Pg.236]

Catalytic oxidation of propylene to acrolein was first discovered by the Shell group in 1948 on Cu20 catalyst (/). Both oxidation and ammoxidation were industrialized by the epoch-making discovery of bismuth molybdate catalyst by SOHIO (2-4). The bismuth molybdate catalyst was first reported in the form of a heteropoly compound supported on Si02, Bi P,Mo,2052/Si02 having Keggin structure but it was not the sole active species for the reactions. Several kinds of binary oxides between molybdenum trioxide and bismuth oxide have been known, as shown in the phase... [Pg.237]

In the 1960s, a number of binary oxides, including molybdenum, tellurium, and antimony, were found to be active for the reactions and some of them were actually used in commercial reactors. Typical commercial catalysts are Fe-Sb-O by Nitto Chemical Ind. Co. (62 -64) and U-Sb-O by SOHIO (65-67), and the former is still industrially used for the ammoxidation of propylene after repeated improvements. Several investigations were reported for the iron-antimony (68-72) and antimony-uranium oxide catalysts (73-75), but more investigations were directed at the bismuth molybdate catalysts. The accumulated investigations for these simple binary oxide catalysts are summarized in the preceding reviews (5-8). [Pg.238]

Typical Reaction Conditions for the Oxidation and Ammoxidation of Propylene on the Simple and Multicomponent Bismuth Molybdate Catalyst°... [Pg.239]

Investigations into the scheelite-type catalyst gave much valuable information on the reaction mechanisms of the allylic oxidations of olefin and catalyst design. However, in spite of their high specific activity and selectivity, catalyst systems with scheelite structure have disappeared from the commercial plants for the oxidation and ammoxidation of propylene. This may be attributable to their moderate catalytic activity owing to lower specific surface area compared to the multicomponent bismuth molybdate catalyst having multiphase structure. [Pg.242]

Choosing divalent and trivalent cations and determining the composition is the most important in designing the multicomponent bismuth molybdate catalyst system. Catalytic activities of typical tri- and tetracomponent bismuth molybdate catalysts having multiphase structure were reported for the oxidation of propylene to form acrolein (35, 36, 40-43, 97, 98). A typical example of the activity test is shown in Fig. 6. Summarizing the results shown in Fig. 6 and reported previously (30, 43, 44), the following trends are generally found. [Pg.245]

Fig. 6. Catalytic activity of multicomponent bismuth molybdate catalysts in the oxidation of propylene (41). Fig. 6. Catalytic activity of multicomponent bismuth molybdate catalysts in the oxidation of propylene (41).
Oxidation of propylene to form acrolein depends on the first order of propylene and is independent of oxygen on multicomponent bismuth molybdate catalysts under the usual reaction conditions. The observed kinetics is the same with simple bismuth molybdates and suggests that the oxidation of propylene proceeds via the similar reaction scheme reported for simple molybdates, the slow step being the abstraction of allylic hydrogen (9-15, 19, 20). However, the reaction sometimes depends on the partial pressure of oxygen under lower temperature and lower oxygen pressure (41, 42). [Pg.249]


See other pages where Propylene bismuth-molybdate is mentioned: [Pg.182]    [Pg.26]    [Pg.31]    [Pg.34]    [Pg.405]    [Pg.165]    [Pg.85]    [Pg.17]    [Pg.244]    [Pg.246]    [Pg.257]    [Pg.41]    [Pg.517]    [Pg.524]    [Pg.234]    [Pg.235]    [Pg.238]    [Pg.238]    [Pg.241]   
See also in sourсe #XX -- [ Pg.151 ]




SEARCH



Bismuth molybdate

Bismuth molybdates

Propylene molybdate

© 2024 chempedia.info