Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties higher-level

Modest levels of IPA slow down crystallization and raise the oxygen-barrier properties. Higher levels of IPA break up crystallinity and lead to amorphous copolyesters with good barrier properties. On the other hand, these copolyesters, show poor impact and other mechanical properties. However, modest levels of CHDM slow down crystallization and decrease oxygen-barrier properties. [Pg.360]

The pubHcations detailing standards (5—8) generally include both specifications and methods of analysis for the substances. The estabHshment of standards of quaHty for chemicals of any kind presupposes the abiHty to set numerical limits on physical properties, allowable impurities, and strength, and to provide the test methods by which conformity to the requirements may be demonstrated. Tests are considered appHcable only to the specific requirements for which they were written. Modification of a requirement, especially if the change is toward a higher level of purity, often necessitates revision of the test to ensure the test s vaHdity. [Pg.444]

Useful materials incorporating fire-retardant additives are not always straightforward to produce. Loadings of 10% are common, and far higher levels of flame retardants are used in some formulations. These concentrations can have a negative effect on the properties and functions for which the materials were originally intended. Product-specific trade-offs are generally necessary between functionaUty, processibiUty, fire resistance, and cost. [Pg.452]

Metallization. Integrated circuits require conductive layers to form electrical connections between contacts on a device, between devices on a chip, between metal layers on a chip, and between chips and higher levels of interconnections needed for packaging the chips. It is critical to the success of IC fabrication that the metallization be stable throughout the process sequence in order to maintain the correct physical and electrical properties of the circuit. It must also be possible to pattern the blanket deposition. [Pg.348]

The dynamic mechanical properties of VDC—VC copolymers have been studied in detail. The incorporation of VC units in the polymer results in a drop in dynamic modulus because of the reduction in crystallinity. However, the glass-transition temperature is raised therefore, the softening effect observed at room temperature is accompanied by increased brittleness at lower temperatures. These copolymers are normally plasticized in order to avoid this. Small amounts of plasticizer (2—10 wt %) depress T significantly without loss of strength at room temperature. At higher levels of VC, the T of the copolymer is above room temperature and the modulus rises again. A minimum in modulus or maximum in softness is usually observed in copolymers in which T is above room temperature. A thermomechanical analysis of VDC—AN (acrylonitrile) and VDC—MMA (methyl methacrylate) copolymer systems shows a minimum in softening point at 79.4 and 68.1 mol % VDC, respectively (86). [Pg.434]

Physical Properties. The egg is composed of three basic parts shell, whites (albumen), and yolk. Each of these components has its own membranes to keep the component intact and separate from the other components. The vitelline membrane surrounds the yolk, which in turn is surrounded by the chala2iferous layer of albumen, keeping the yolk in place. Egg white (albumen) consists of an outer thin layer next to the shell, an outer thick layer near the shell, an inner thin layer, and finally, an inner thick layer next to the yolk. Thick layers of albumen have a higher level of ovomucin in addition to natural proportions of all the other egg white proteins. This ovomucin breaks into shorter fibers when the egg white is blended on a high speed mixer (3), or when the egg white ages. Viscosity is gready reduced when the egg white is blended in this way. [Pg.454]

Plasticizers. These are used to improve compound processibiHty, modify vulcani2ate properties, and reduce cost. Por many appHcations, where cost and processibiHty are the objective, naphthenic and aromatic oils are preferred. They are inexpensive yet effective in improving processibiHty at high filler levels. The compatibiHty of the naphthenic oils is limited to about 20 parts per hundred mbber. Aromatic oils are more compatible and can be used at higher levels (132). [Pg.544]

Plasticizers. Addition of plasticizers (qv) to polyether elastomers alters physical properties, improves processing, and can improve low temperature flexibiUty. Plasticizers also reduce vulcanizate costs by allowing the use of higher levels of less expensive fillers. [Pg.556]

The ion- exchange properties of the composite films were studied by spectrophotometric and voltammetric methods using soi ption of Fe(Phen) + and rhodamine 6G for PVSA-SG or PSS-SG films and methyl orange or lumogallion (LG) for PDMDA-SG films. Tween-20 at its cmc and higher level was shown to be better stmcture directed additive than Triton X-100. [Pg.306]

Vibrational energy, which is associated with the alternate extension and compression of die chemical bonds. For small displacements from the low-temperature equilibrium distance, the vibrational properties are those of simple harmonic motion, but at higher levels of vibrational energy, an anharmonic effect appears which plays an important role in the way in which atoms separate from tire molecule. The vibrational energy of a molecule is described in tire quantum theory by the equation... [Pg.44]

The two-component waterborne urethanes are similar in nature to the one-component waterborne urethanes. In fact, many one-component PUD s may benefit from the addition of a crosslinker. The two-component urethanes may have higher levels of carboxylic acid salt stabilizer built into the backbone than is actually needed to stabilize the urethane in water. As a result, if these two-component urethane dispersions were to be used as one-component adhesives by themselves (without crosslinker), they would show very poor moisture resistance. When these two-component urethane dispersions are used in conjunction with the crosslinkers listed in Fig. 8, the crosslinkers will react with the carboxylic pendant groups built into the urethane, as previously shown in the one-component waterborne urethane section. This accomplishes two tasks at the same time (1) when the crosslinker reacts with the carboxylic acid salt, it eliminates much of the hydrophilicity associated with urethane dispersion, and (2) it crosslinks the dispersion, which imparts solvent and moisture resistance to the urethane adhesive (see phase V in Fig. 5). As a result of crosslinking, the physical properties may be modified. For example, the results may be an increase in tensile properties and a decrease in elongation. Depending upon the level of crosslinking, the dispersion may lose the ability to be repositionable. (Many of the one-component PUD s may... [Pg.797]

The fundamental concept of AL is emergence, or the appearance of higher-level properties and behaviors of a system that - while obviously originating from the collective dynamics of that system s components - are neither to be found in nor are directly deducible from the lower-level properties of that system. Emergent properties are properties of the whole that are not possessed by any of the individual parts making up that whole an air molecule is not a tornado and a neuron is not conscious. [Pg.557]


See other pages where Properties higher-level is mentioned: [Pg.234]    [Pg.298]    [Pg.234]    [Pg.298]    [Pg.389]    [Pg.137]    [Pg.194]    [Pg.317]    [Pg.545]    [Pg.551]    [Pg.317]    [Pg.289]    [Pg.196]    [Pg.240]    [Pg.498]    [Pg.499]    [Pg.334]    [Pg.6]    [Pg.388]    [Pg.84]    [Pg.20]    [Pg.144]    [Pg.534]    [Pg.32]    [Pg.807]    [Pg.1136]    [Pg.2]    [Pg.284]    [Pg.110]    [Pg.558]    [Pg.585]    [Pg.602]    [Pg.609]    [Pg.37]    [Pg.318]    [Pg.75]    [Pg.53]    [Pg.348]   
See also in sourсe #XX -- [ Pg.3 , Pg.8 ]




SEARCH



Leveling properties

Property levels

© 2024 chempedia.info