Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties binary systems

Alloys. GaUium has complete miscibility in the hquid state with aluminum, indium, tin, and zinc. No compounds are formed. However, these binary systems form simple eutectics having the following properties ... [Pg.160]

A vast store of liquid-phase excess-property data for binary systems at temperatures near 30°C and somewhat higher is available in the literature. Effective use of these data to extend correlations to higher... [Pg.540]

Fig. 59 shows, schematically, possible property variations for a hypothetical binary system composed of components A and B. Variation of the values of the property in accordance with the additive law indicates that the system s behavior is close to that of an ideal system. [Pg.148]

In 163—167 we have deduced some properties of systems of two components in two phases ( binary systems V) directly from the fundamental principles, and in 169—173 we have obtained quantitative relations in certain special cases. Here we shall j obtain some general equations relating to such systems with the i help of the thermodynamic potential (cf. 155)., ... [Pg.410]

An alloy is said to be of Type II if neither the AC nor the BC component has the structure a as its stable crystal form at the temperature range T]. Instead, another phase (P) is stable at T, whereas the a-phase does exist in the phase diagram of the constituents at some different temperature range. It then appears that the alloy environment stabilizes the high-temperature phase of the constituent binary systems. Type II alloys exhibit a a P phase transition at some critical composition Xc, which generally depends on the preparation conditions and temperature. Correspondingly, the alloy properties (e.g., lattice constant, band gaps) often show a derivative discontinuity at Xc. [Pg.23]

A general problem existing with all multicomponent catalysts is the fact that their catalytic activity depends not on the component ratio in the bulk of the electrode but on that in the surface layer, which owing to the preferential dissolution of certain components, may vary in time or as a result of certain electrode pretreatments. The same holds for the phase composition of the surface layer, which may well be different from that in the bulk alloy. It is for this reason that numerous attempts at correlating the catalytic activities of alloys and other binary systems with their bulk properties proved futile. [Pg.540]

Typically, a binary system was selected as the base component of the recipe and the addition of polyelectrolytes to either side (core or receiving bath) was tested to evaluate the change in the capsule properties. The 33 successful multicomponent membrane systems are presented in Table 1. The components of the core material side (21 different chemical compositions) are listed in the first column, while the receiving bath components (20 different chemical compositions) are listed in the second column. With the exception of xanthan and CMC, the first polymer listed on the core side are gelling polymers which form beads with the appropriate ionotropic cation (salt). CMC can also be gelled by ions (alum), although they are considered to be non-compatible for cellular applications. The cations were tested both sequentially, usually with ionotropic cation first, and simultaneously. Walled capsules with adequate mechanical properties were often obtained through the simultaneous application of two polycations. Such a... [Pg.61]

In mathematical terms the partial molar properties of a binary system will in general be given through... [Pg.77]

The mathematical treatment can be further simplified in one particular case, that corresponding to Figure 4.10(a). As we saw in the previous section, in some binary systems the two terminal solid solution phases have very different physical properties and the solid solubility may be neglected for simplicity. If we assume no solid solubility (i.e. as =a =1) and in addition neglect the effect of the heat capacity difference between the solid and liquid components, eqs. (4.29) and (4.30) can be transformed to two equations describing the two liquidus branches ... [Pg.100]

The binary systems we have discussed so far have mainly included phases that are solid or liquid solutions of the two components or end members constituting the binary system. Intermediate phases, which generally have a chemical composition corresponding to stoichiometric combinations of the end members of the system, are evidently formed in a large number of real systems. Intermediate phases are in most cases formed due to an enthalpic stabilization with respect to the end members. Here the chemical and physical properties of the components are different, and the new intermediate phases are formed due to the more optimal conditions for bonding found for some specific ratios of the components. The stability of a ternary compound like BaCC>3 from the binary ones (BaO and CC>2(g)) may for example be interpreted in terms of factors related to electron transfer between the two binary oxides see Chapter 7. Entropy-stabilized intermediate phases are also frequently reported, although they are far less common than enthalpy-stabilized phases. Entropy-stabilized phases are only stable above a certain temperature,... [Pg.103]

Thus, in the free energy of mixing of a binary system, the first-order terms cancel each other and do not appear. All of the integrals contained in the terms Z a, A, K, M, and T in Eq. (87) are dependent solely on the properties of the comparison salt and are constant for binary conformal ionic mixtures having X- as the anion. [Pg.106]

Using a recent equation of state of the van der Waals type developed to describe non-polar components, a model is presented which considers water as a mixture of monomers and a limited number of polymers formed by association. The parameters of the model are determined so as to describe the pure-component properties (vapour pressure, saturated volumes of both phases) of water and the phase equilibria (vapour-liquid and/or liquid-liquid) for binary systems with water including selected hydrocarbons and inorganic gases. The results obtained are satisfactory for a considerable variety of different types of system over a wide range of pressure and temperature. [Pg.433]

By using a systematic procedure to find the relevant element properties representing the alloying behaviour of binary systems, Villars (1983, 1985) defined three expressions for atomic properties which enable systems that form compounds to be separated from those that do not. [Pg.309]

Owing to their numerous actual and potential applications, several ternary and complex systems of these metals, especially of aluminium, have been investigated a few examples of the systematics of Al-Me-X alloys are presented in 5.18 and in Fig. 5.41. Recent contributions to this subject have been given with the study of the systems R-Al-Cu (Riani et al. 2005, and references there in). These rare earth alloys, characterized by the formation of several intermediate phases, are interesting also as raw materials for the preparation of amorphous alloys. Regularities in the trends of their properties have been underlined. The experimental and calculated data relevant to the binary systems Al-Fe, Al-Ni and Fe-Ni have been examined and discussed in a paper concerning the assessment of the ternary Al-Fe-Ni system (Eleno et al. 2006). [Pg.486]

A very popular sequence of inputs is the pseudorandom binary sequence (PRBS). It is easy to generate and has some attractive statistical properties. See System Identification For Self-Adaptive Control, W. D. T. Davies, London, Wiley-Iflterscience, 1970. [Pg.525]

Subvolume B2, Thermodynamic Properties of Inorganic Materials Binary Systems. Part 2 Elements and Binary Systems from B-C to Cr-Zr, 2004, http //www.springerlink.com/link.asp id=Q4AMK7NV6RFN. [Pg.50]

Subvolume B3, Thermodynamic Properties of Inorganic Materials Binary systems. Part 3 Binary Systems from Cs-K to Mg-Zr, 2005, http //www. springerlink.com/link.asp7id = N4NFQ36PTE6B. [Pg.274]

Ortega, J., Espiau, F., Tojo, J., Canosa, J., and Rodriguez, A. Isobaric vapor-liquid equilibria and excess properties for the binary systems of methyl esters -t heptane, J. Chem. Eng. Data, 48(5) 1183-1190, 2003. [Pg.1705]

Transition Region Considerations. The conductance of a binary system can be approached from the values of conductivity of the pure electrolyte one follows the variation of conductance as one adds water or other second component to the pure electrolyte. The same approach is useful for other electrochemical properties as well the e.m. f. and the anodic behaviour of light, active metals, for instance. The structure of water in this "transition region" (TR), and therefore its reactions, can be expected to be quite different from its structure and reactions, in dilute aqueous solutions. (The same is true in relation to other non-conducting solvents.) The molecular structure of any liquid can be assumed to be close to that of the crystals from which it is derived. The narrower is the temperature gap between the liquid and the solidus curve, the closer are the structures of liquid and solid. In the composition regions between the pure water and a eutectic point the structure of the liquid is basically like that of water between eutectic and the pure salt or its hydrates the structure is basically that of these compounds. At the eutectic point, the conductance-isotherm runs through a maximum and the viscosity-isotherm breaks. Examples are shown in (125). [Pg.283]

Determination of transformation enthalpies in binary systems. Just as consistent values of for elements can be obtained by back-extrapolation from binary systems, so it is possible to obtain values of by extrapolating the enthalpy of mixing vs composition in an alloy system where the phase has a reasonable range of existence. The archetypal use of this technique was the derivation of the lattice stability of f.c.c. Cr from the measured thermodynamic properties of the Ni-based f c.c. solid solution (7) in the Ni-Cr system (Kaufman 1972). If it is assumed that the f.c.c. phase is a regular solution, the following expression can be obtained ... [Pg.156]

Movements in the plane of the interface result from local variations of interfacial tension during the course of mass transfer. These variations may be produced by local variations of any quantity which affects the interfacial tension. Interfaeial motions have been ascribed to variations in interfacial concentration (H6, P6, S33), temperature (A9, P6), and electrical properties (AlO, B19). In ternary systems, variations in concentration are the major factor causing interfacial motion in partially miscible binary systems, interfacial temperature variations due to heat of solution effects are usually the cause. [Pg.246]


See other pages where Properties binary systems is mentioned: [Pg.2524]    [Pg.9]    [Pg.322]    [Pg.1130]    [Pg.153]    [Pg.1618]    [Pg.142]    [Pg.397]    [Pg.63]    [Pg.98]    [Pg.66]    [Pg.91]    [Pg.110]    [Pg.151]    [Pg.319]    [Pg.561]    [Pg.12]    [Pg.291]    [Pg.116]    [Pg.39]    [Pg.170]    [Pg.79]    [Pg.69]    [Pg.31]    [Pg.114]    [Pg.147]    [Pg.73]    [Pg.99]   
See also in sourсe #XX -- [ Pg.101 ]




SEARCH



Binary systems

System properties

Systemic properties

© 2024 chempedia.info