Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membranes multicomponent

There are several approaches to the preparation of multicomponent materials, and the method utilized depends largely on the nature of the conductor used. In the case of polyacetylene blends, in situ polymerization of acetylene into a polymeric matrix has been a successful technique. A film of the matrix polymer is initially swelled in a solution of a typical Ziegler-Natta type initiator and, after washing, the impregnated swollen matrix is exposed to acetylene gas. Polymerization occurs as acetylene diffuses into the membrane. The composite material is then oxidatively doped to form a conductor. Low density polyethylene (136,137) and polybutadiene (138) have both been used in this manner. [Pg.39]

In order to design a zeoHte membrane-based process a good model description of the multicomponent mass transport properties is required. Moreover, this will reduce the amount of practical work required in the development of zeolite membranes and MRs. Concerning intracrystaUine mass transport, a decent continuum approach is available within a Maxwell-Stefan framework for mass transport [98-100]. The well-defined geometry of zeoHtes, however, gives rise to microscopic effects, like specific adsorption sites and nonisotropic diffusion, which become manifested at the macroscale. It remains challenging to incorporate these microscopic effects into a generalized model and to obtain an accurate multicomponent prediction of a real membrane. [Pg.231]

In multicomponent systems, large solutes with lower diffusivity polarize more and exclude smaller solutes from the membrane surface, decreasing their passage. Operation at the knee of the flex curve reduces this effect. [Pg.53]

In PEMFCs, the membrane electrode assembly (MEA, Eig. 15.2a) is a multilayer sandwich composed of catalytic layers (CLs) where electrochemical reactions take place, gas-diffusion media providing access of gases to the CLs, and a proton exchange membrane (PEM) such as Nafion . The CL is a multiphase multicomponent medium comprising ... [Pg.517]

Hydrogen bonding and electrostatic interactions between the sample molecules and the phospholipid bilayer membranes are thought to play a key role in the transport of such solute molecules. When dilute 2% phospholipid in alkane is used in the artificial membrane [25,556], the effect of hydrogen bonding and electrostatic effects may be underestimated. We thus explored the effects of higher phospholipid content in alkane solutions. Egg and soy lecithins were selected for this purpose, since multicomponent mixtures such as model 11.0 are very costly, even at levels of 2% wt/vol in dodecane. The costs of components in 74% wt/vol (see below) levels would have been prohibitive. [Pg.183]

The above iso-pH measurements are based on the 2% DOPC/dodecane system (model 1.0 over pH 3-10 range). Another membrane model was also explored by us. Table 7.16 lists iso-pH effective permeability measurements using the soy lecithin (20% wt/vol in dodecane) membrane PAMPA (models 17.1, 24.1, and 25.1) The negative membrane charge, the multicomponent phospholipid mixture, and the acceptor sink condition (Table 7.1) result in different intrinsic permeabilities for the probe molecules. Figure 7.40 shows the relationship between the 2% DOPC and the 20% soy iso-pH PAMPA systems for ketoprofen. Since the intrinsic permeability of ketoprofen in the soy lecithin membrane is about 20 times greater than in DOPC membrane, the flat diffusion-limited transport region of the log Pe... [Pg.209]

Antonenko et al. [540] considered pH gradients forming in the UWL under bulk solution iso-pH conditions. They elegantly expanded on the buffer effect model and made it more general by considering multicomponent buffer mixtures. Direct measurements of the pH gradients (using wire-coated micro-pH electrodes) near the membrane-water interface were described. [Pg.231]

Typically, a binary system was selected as the base component of the recipe and the addition of polyelectrolytes to either side (core or receiving bath) was tested to evaluate the change in the capsule properties. The 33 successful multicomponent membrane systems are presented in Table 1. The components of the core material side (21 different chemical compositions) are listed in the first column, while the receiving bath components (20 different chemical compositions) are listed in the second column. With the exception of xanthan and CMC, the first polymer listed on the core side are gelling polymers which form beads with the appropriate ionotropic cation (salt). CMC can also be gelled by ions (alum), although they are considered to be non-compatible for cellular applications. The cations were tested both sequentially, usually with ionotropic cation first, and simultaneously. Walled capsules with adequate mechanical properties were often obtained through the simultaneous application of two polycations. Such a... [Pg.61]

Table 2. Properties of selected multicomponent membrane systems... [Pg.63]

Table 2 indicates that the most suitable capsular membranes comprised semi-or non-transparent systems. Generally, the multicomponent blending resulted in smooth capsules with the exception of the alginate/spermine-polymethylene-co-guanidine systems which were either irregularly shaped or mosaic. There was no correlation observed between the capsule turbidity and permeability. [Pg.69]

Continuous Multicomponent Distillation Column 501 Gas Separation by Membrane Permeation 475 Transport of Heavy Metals in Water and Sediment 565 Residence Time Distribution Studies 381 Nitrification in a Fluidised Bed Reactor 547 Conversion of Nitrobenzene to Aniline 329 Non-Ideal Stirred-Tank Reactor 374 Oscillating Tank Reactor Behaviour 290 Oxidation Reaction in an Aerated Tank 250 Classic Streeter-Phelps Oxygen Sag Curves 569 Auto-Refrigerated Reactor 295 Batch Reactor of Luyben 253 Reversible Reaction with Temperature Effects 305 Reversible Reaction with Variable Heat Capacities 299 Reaction with Integrated Extraction of Inhibitory Product 280... [Pg.607]

It is fortunate that theory has been extended to take into account selective interactions in multicomponent systems, and it is seen from Eq. (91) (which is the expression used for the plots in Fig. 42 b) that the intercept at infinite dilution of protein or other solute does give the reciprocal of its correct molecular weight M2. This procedure is a straightforward one whereby one specifies within the constant K [Eq. (24)] a specific refractive index increment (9n7dc2)TiM. The subscript (i (a shorter way of writing subscripts jUj and ju3) signifies that the increments are to be taken at constant chemical potential of all diffusible solutes, that is, the components other than the polymer. This constitutes the osmotic pressure condition whereby only the macromolecule (component-2) is non-diffusible through a semi-permeable membrane. The quantity... [Pg.205]

Cytochrome bci is a multicomponent enzyme found in the inner mitochron-drial membrane of eukaryotes and in the plasma membrane of bacteria. The cytochrome bci complex functions as the middle component of the mitochondrial respiratory chain, coupling electron transfer between ubiquinone/ ubiquinol (see Figure 7.27) and cytochrome c. [Pg.388]

Divisek et al. presented a similar two-phase, two-dimensional model of DMFC. Two-phase flow and capillary effects in backing layers were considered using a quantitatively different but qualitatively similar function of capillary pressure vs liquid saturation. In practice, this capillary pressure function must be experimentally obtained for realistic DMFC backing materials in a methanol solution. Note that methanol in the anode solution significantly alters the interfacial tension characteristics. In addition, Divisek et al. developed detailed, multistep reaction models for both ORR and methanol oxidation as well as used the Stefan—Maxwell formulation for gas diffusion. Murgia et al. described a one-dimensional, two-phase, multicomponent steady-state model based on phenomenological transport equations for the catalyst layer, diffusion layer, and polymer membrane for a liquid-feed DMFC. [Pg.518]

The structure of biological and model membranes is frequently viewed in the context of the fluid mosaic model [4], Since biological membranes are composed of a mixture of various lipids, proteins, and carbohydrates the supra-structure or lateral organization of the components is not necessarily random. In order to model biological membranes, lipid assemblies of increasing complexity were studied. Extensive investigation of multicomponent monolayers (at the air-water interface) as well as bilayers have been reported. [Pg.54]

Besides differential scanning calorimetry, electron microscopy can also serve for characterizing the mixing behavior of multicomponent vesicular systems. The ripple structure of phospholipids with saturated alkyl chains (also referred to as smectic Bca phase, Fig. 35) is taken to indicate patch formation (immiscibility) in mixed phos-close enough (1-2 nm) lipid molecules are able to diffuse from one membrane to the between the pre- and main-transition of the corresponding phospholipid, electron... [Pg.36]

Paul, D. R. Gas Transport in Homogeneous Multicomponent Polymers, J.Membrane Sci., in press... [Pg.141]


See other pages where Membranes multicomponent is mentioned: [Pg.209]    [Pg.85]    [Pg.151]    [Pg.471]    [Pg.234]    [Pg.337]    [Pg.338]    [Pg.4]    [Pg.328]    [Pg.366]    [Pg.64]    [Pg.9]    [Pg.41]    [Pg.52]    [Pg.61]    [Pg.67]    [Pg.651]    [Pg.304]    [Pg.161]    [Pg.44]    [Pg.61]    [Pg.201]    [Pg.327]    [Pg.118]    [Pg.494]    [Pg.518]    [Pg.115]    [Pg.246]    [Pg.151]    [Pg.185]    [Pg.186]    [Pg.445]    [Pg.1579]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Membrane processes multicomponent separation

Membranes Multicomponent distillation

© 2024 chempedia.info