Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Prochiral compounds reduction

Asymmetric Induction during Cathodic Reduction of Prochiral Compounds in the Presence of Chiral Cations... [Pg.94]

Yeast reductions have shown great versatility by the synthetic organic chemist to prepare chiral alcohols from prochiral ketones, most of which have used Sac-charomyces cerevisiae (Baker s yeast). In addition to prochiral ketone reductions, hundreds of other examples of yeast reductions have been cited in the literature using a variety of substrates such as P-keto esters, [l-dikctones, and analogs such as sulfur and nitrogen-containing compounds [49-52]. Examples of yeast reductions used to prepare some important chiral intermediates as reported by several pharmaceutical companies are given in this section. [Pg.250]

According to Abe et al. the reduction on graphite-poly-L-valine electrode was extended to prochiral compounds other then olefins. As shown below carbonyl compounds were reduced in reactions 1-3 (Scheme 6.2.) and a cyclopropane derivative was hydrogenolysed in reaction 4. [Pg.270]

Reductive alkylation with chiral substrates may afford new chiral centers. The reaction has been of interest for the preparation of optically active amino acids where the chirality of the amine function is induced in the prochiral carbonyl moiety 34,35). The degree of induced asymmetry is influenced by substrate, solvent, and temperature 26,27,28,29,48,51,65). Asymmetry also has been obtained by reduction of prochiral imines, using a chiral catalyst 44). Prediction of the major configurational isomer arising from a reductive alkylation can be made usually by the assumption that amine formation comes via an imine, not the hydroxyamino addition compound, and that the catalyst approaches the least hindered side (57). [Pg.91]

In order to broaden the field of biocatalysis in ionic liquids, other enzyme classes have also been screened. Of special interest are oxidoreductases for the enan-tioselective reduction of prochiral ketones [40]. Formate dehydrogenase from Candida boidinii was found to be stable and active in mixtures of [MMIM][MeS04] with buffer (Entry 12) [41]. So far, however, we have not been able to find an alcohol dehydrogenase that is active in the presence of ionic liquids in order to make use of another advantage of ionic liquids that they increase the solubility of hydrophobic compounds in aqueous systems. On addition of 40 % v/v of [MMIM][MeS04] to water, for example, the solubility of acetophenone is increased from 20 mmol to 200 mmol L ... [Pg.342]

The synthesis of the right-wing sector, compound 4, commences with the prochiral diol 26 (see Scheme 4). The latter substance is known and can be conveniently prepared in two steps from diethyl malonate via C-allylation, followed by reduction of the two ethoxy-carbonyl functions. Exposure of 26 to benzaldehyde and a catalytic amount of camphorsulfonic acid (CSA) under dehydrating conditions accomplishes the simultaneous protection of both hydroxyl groups in the form of a benzylidene acetal (see intermediate 32, Scheme 4). Interestingly, when benzylidene acetal 32 is treated with lithium aluminum hydride and aluminum trichloride (1 4) in ether at 25 °C, a Lewis acid induced reduction takes place to give... [Pg.197]

Prochiral aryl and dialkyl ketones are enantioselectively reduced to the corresponding alcohols using whole-cell bioconversions, or an Ir1 amino sulfide catalyst prepared in situ.695 Comparative studies show that the biocatalytic approach is the more suitable for enantioselective reduction of chloro-substituted ketones, whereas reduction of a,/ -unsaturated compounds is better achieved using the Ir1 catalyst. An important step in the total synthesis of brevetoxin B involves hydrogenation of an ester using [Ir(cod)(py) P(cy)3 ]PF6.696... [Pg.228]

One approach to enantioselective reduction of prochiral carbonyl compounds is to utilize chiral ligand-modified metal hydride reagents. In these reagents, the number of reactive hydride species is minimized in order to get high chemo-selectivity. Enantiofacial differentiation is due to the introduced chiral ligand. [Pg.356]

Since the discovery of the CBS catalyst system, many chiral //-amino alcohols have been prepared for the synthesis of new oxazoborolidine catalysts. Compounds 95 and 96 have been prepared93 from L-cysteine. Aziridine carbi-nols 97a and 97b have been prepared94 from L-serine and L-threonine, respectively. When applied in the catalytic borane reduction of prochiral ketones, good to excellent enantioselectivity can be attained (Schemes 6-42 and 6-43). [Pg.370]

In summary, many attempts have been made at achieving enantioselective reduction of ketones. Modified lithium aluminum hydride as well as the ox-azaborolidine approach have proved to be very successful. Asymmetric hydrogenation catalyzed by a chiral ligand-coordinated transition metal complex also gives good results. Figure 6-7 lists some of the most useful chiral compounds relevant to the enantioselective reduction of prochiral ketones, and interested readers may find the corresponding applications in a number of review articles.77,96,97... [Pg.372]

Homogeneous enantioselective hydrogenation constitutes one of the most versatile and effective methods to convert prochiral substrates to valuable optically active products. Recent progress makes it possible to synthesize a variety of chiral compounds with outstanding levels of efficiency and enantioselectivity through the reduction of the C=C, C=N, and C=0 bonds. The asymmetric hydrogenation of functionalized C=C bonds, such as enamide substrates, provides access to various valuable products such as amino acids, pharmaceuticals, and... [Pg.388]

The asymmetric reduction of prochiral ketones to their corresponding enantiomerically enriched alcohols is one of the most important molecular transformations in synthetic chemistry (20,21). The products are versatile intermediates for the synthesis of pharmaceuticals, biologically active compounds and fine chemicals (22,23). The racemic reversible reduction of carbonyls to carbinols with superstoichiometric amounts of aluminium alkoxides in alcohols was independently discovered by Meerwein, Ponndorf and Verley (MPV) in 1925 (21—26). Only in the early 1990s, first successful versions of catalytic... [Pg.43]

Borane and aluminum hydrides modified by chiral diols or amino alcohols are well-known, effective reagents for the stoichiometric enan-tioselective reduction of prochiral ketones and related compounds (34). Reduction of prochiral aromatic ketones with the Itsuno reagent, which is prepared from a chiral, sterically congested /3-amino alcohol and borane, yields the corresponding secondary alcohols in 94-100% ee... [Pg.270]

Electroenzymatic reactions are not only important in the development of ampero-metric biosensors. They can also be very valuable for organic synthesis. The enantio- and diasteroselectivity of the redox enzymes can be used effectively for the synthesis of enantiomerically pure compounds, as, for example, in the enantioselective reduction of prochiral carbonyl compounds, or in the enantio-selective, distereoselective, or enantiomer differentiating oxidation of chiral, achiral, or mes< -polyols. The introduction of hydroxy groups into aliphatic and aromatic compounds can be just as interesting. In addition, the regioselectivity of the oxidation of a certain hydroxy function in a polyol by an enzymatic oxidation can be extremely valuable, thus avoiding a sometimes complicated protection-deprotection strategy. [Pg.659]

Chiral alcohols are valuable products mainly as building blocks for pharmaceuticals or agro chemicals or as part of chiral catalysts. Cheap biotransformation methods for the selective reduction of particular ketone compounds are known for many years rather catalyzed by fermentation than with isolated enzymes. Products prepared with whole cells such as baker s yeast often lack high enantioselectivity and there were several attemps to use isolated enzymes. Resolution of racemates with hydrolases are known in some cases but very often the reduction of the prochiral ketone using alcohol dehydrogenases are much more attractive. [Pg.148]

The boron atom dominates the reactivity of the boracyclic compounds because of its inherent Lewis acidity. Consequently, there have been very few reports on the reactivity of substituents attached to the ring carbon atoms in the five-membered boronated cyclic systems. Singaram and co-workers developed a novel catalyst 31 based on dicarboxylic acid derivative of 1,3,2-dioxaborolane for the asymmetric reduction of prochiral ketones 32. This catalyst reduces a wide variety of ketones enantioselectively in the presence of a co-reductant such as LiBH4. The mechanism involves the coordination of ketone 32 with the chiral boronate 31 and the conjugation of borohydride with carboxylic acid to furnish the chiral borohydride complex 34. Subsequent transfer of hydride from the least hindered face of the ketone yields the corresponding alcohol 35 in high ee (Scheme 3) <20060PD949>. [Pg.620]

Another use of compound (1) involves synthesis of NADH models incorporating chiral and nonchiral l/f-pyrrolo[2,3-6]pyridine derivatives. In this latter application, the products derived from compound (1) have been useful for the study of systems that were unreactive with similar reagents. By the appropriate manipulation of reaction conditions, products derived from compound (1) selectively form either (but only one) enantiomer in reduction of a prochiral ketone. Finally, the products derived from compound (1) are useful reagents in the preparation of chiral precursors of target molecules <91T429>. [Pg.223]

Asymmetric reduction of prochiral carbonyl compounds for the production of chiral alcohols D-pantoyl lactone production by... [Pg.355]

ASYMMETRIC REDUCTION OF PROCHIRAL CARBONYL COMPOUNDS FOR THE PRODUCTION OF CHIRAL ALCOHOLS D-PANTOYL LACTONE PRODUCTION BY ASYMMETRIC REDUCTION... [Pg.356]

Chiral alcohols are some of the most important chiral building blocks for the production of pharmaceuticals. The creation of chiral alcohols through the asymmetric reduction of prochiral carbonyl compounds using biocatalysts, such as microbial cells and commercially available oxidoreductases, has been... [Pg.356]


See other pages where Prochiral compounds reduction is mentioned: [Pg.2383]    [Pg.1637]    [Pg.2383]    [Pg.247]    [Pg.247]    [Pg.437]    [Pg.110]    [Pg.576]    [Pg.3]    [Pg.17]    [Pg.24]    [Pg.259]    [Pg.55]    [Pg.1194]    [Pg.247]    [Pg.1060]    [Pg.576]    [Pg.50]    [Pg.123]    [Pg.331]    [Pg.143]    [Pg.1267]    [Pg.2376]    [Pg.119]    [Pg.4]    [Pg.504]    [Pg.346]    [Pg.403]   


SEARCH



Prochiral

Prochiral compounds ketones, asymmetric reductive

Prochirality

Reduction of Labeled Prochiral Carbonyl Compounds and Oximes

© 2024 chempedia.info