Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction prochiral ketones

Prochiral aryl and dialkyl ketones are enantioselectively reduced to the corresponding alcohols using whole-cell bioconversions, or an Ir1 amino sulfide catalyst prepared in situ.695 Comparative studies show that the biocatalytic approach is the more suitable for enantioselective reduction of chloro-substituted ketones, whereas reduction of a,/ -unsaturated compounds is better achieved using the Ir1 catalyst. An important step in the total synthesis of brevetoxin B involves hydrogenation of an ester using [Ir(cod)(py) P(cy)3 ]PF6.696... [Pg.228]

Asymmetric reduction of cyclic ketones. Prochiral cyclic ketones arc reduced to (R)-alcohols in 75-96% ee by a chiral hydride obtained by refluxing a mixture of lithium aluminum hydride, (— )-N-methylephedrine (I equiv.), and 2-ethylaminopyridine (2 cquiv.) in ether for 3 hours. Reduction of prochiral acychc ketones with this hydride also results in (R)-alcohols, but only in moderate yield. [Pg.322]

Oxazaborolldines have emerged as important reagents for the enantioselective reduction of a variety of prochiral ketones. CBS reduction (chiral oxazaborolidine-catalyzed reduction)of unsymmetrical ketones with diphenyl oxazaborolidine in the presence of BH3 proceeds catalytically to provide alcohols of predicable absolute stereochemistry in high enantiomeric excess. [Pg.127]

Enzymes provide an alternative to chemical methods for the enantioselective reduction of prochiral ketones. These reductions are usually carrried out in water or buffered aqueous suspensions with sugars as nutrients. [Pg.129]

Diisobutylaluminium hydride (DIBAL-H) is a bulky hydride reducing agent that is very useful for the stereoselective reduction of prochiral ketones and reductions at... [Pg.109]

Chiral aluminium hydride for the asymmetric reduction of prochiral ketones... [Pg.49]

The hydride-donor class of reductants has not yet been successfully paired with enantioselective catalysts. However, a number of chiral reagents that are used in stoichiometric quantity can effect enantioselective reduction of acetophenone and other prochiral ketones. One class of reagents consists of derivatives of LiAlH4 in which some of die hydrides have been replaced by chiral ligands. Section C of Scheme 2.13 shows some examples where chiral diols or amino alcohols have been introduced. Another type of reagent represented in Scheme 2.13 is chiral trialkylborohydrides. Chiral boranes are quite readily available (see Section 4.9 in Part B) and easily converted to borohydrides. [Pg.110]

Enantioselective reductions of prochiral ketones by means of oxazaborolidines 97CLY9. [Pg.273]

In order to broaden the field of biocatalysis in ionic liquids, other enzyme classes have also been screened. Of special interest are oxidoreductases for the enan-tioselective reduction of prochiral ketones [40]. Formate dehydrogenase from Candida boidinii was found to be stable and active in mixtures of [MMIM][MeS04] with buffer (Entry 12) [41]. So far, however, we have not been able to find an alcohol dehydrogenase that is active in the presence of ionic liquids in order to make use of another advantage of ionic liquids that they increase the solubility of hydrophobic compounds in aqueous systems. On addition of 40 % v/v of [MMIM][MeS04] to water, for example, the solubility of acetophenone is increased from 20 mmol to 200 mmol L ... [Pg.342]

Unsymmetrical ketones are prochiral (p. 164) that is, reduction creates a new chiral center ... [Pg.1200]

In the above cases, an optically active reducing agent or catalyst interacts with a prochiral substrate. Asymmetric reduction of ketones has also been achieved with an achiral reducing agent, if the ketone is complexed to an optically active transition metal Lewis acid. ... [Pg.1201]

Probably the first non-covalent immobilization of a chiral complex with diazaligands was the adsorption of a rhodium-diphenylethylenediamine complex on different supports [71]. These solids were used for the hydride-transfer reduction of prochiral ketones (Scheme 2) in a continuous flow reactor. The inorganic support plays a crucial role. The chiral complex was easily... [Pg.183]

In 2000, Woodward et al. reported that LiGaH4, in combination with the S/ 0-chelate, 2-hydroxy-2 -mercapto-1,1 -binaphthyl (MTBH2), formed an active catalyst for the asymmetric reduction of prochiral ketones with catecholborane as the hydride source (Scheme 10.65). The enantioface differentiation was on the basis of the steric requirements of the ketone substituents. Aryl w-alkyl ketones were reduced in enantioselectivities of 90-93% ee, whereas alkyl methyl ketones e.g. i-Pr, Cy, t-Bu) gave lower enantioselectivities of 60-72% ee. [Pg.343]

On the other hand a direct hydrogen transfer through a Meerwein-Ponndorf mechanism, involving coordination of both the donor alcohol and the ketone to the copper site may also be considered. In this case, by using alcohols other than 2-propanol, we could expect some difference in stereochemistry. This would also imply the possibility of carrying out the enantioselective reduction of a prochiral ketone with a chiral alcohol as donor. [Pg.298]

Enantiometrically pure alcohols are important and valuable intermediates in the synthesis of pharmaceuticals and other fine chemicals. A variety of synthetic methods have been developed to obtain optically pure alcohols. Among these methods, a straightforward approach is the reduction of prochiral ketones to chiral alcohols. In this context, varieties of chiral metal complexes have been developed as catalysts in asymmetric ketone reductions [ 1-3]. However, in many cases, difficulties remain in the process operation, and in obtaining sufficient enantiomeric purity and productivity [2,3]. In addition, residual metal in the products originating from the metal catalyst presents another challenge because of the ever more stringent regulatory restrictions on the level of metals allowed in pharmaceutical products [4]. An alternative to the chemical asymmetric reduction processes is biocatalytic transformation, which offers... [Pg.136]

Complexation of (124) and (125) with [ Rh(COD)Cl 2] in the presence of Si(OEt)4, followed by sol-gel hydrolysis condensation, afforded new catalytic chiral hybrid material. The catalytic activities and selectivities of these solid materials have been studied in the asymmetric hydro-gen-transfer reduction of prochiral ketones and compared to that of the homogeneous rhodium complexes containing the same ligands (124) and (125) 307... [Pg.115]

The asymmetric organosilane reduction of prochiral ketones has been studied as an alternative to the asymmetric hydrogenation approach. A wide variety of chiral ligand systems in combination with transition metals can be employed for this purpose. The majority of these result in good to excellent chemical yields of the corresponding alcohols along with a trend for better ee results with aryl alkyl ketones than with prochiral dialkyl ketones. [Pg.105]

As an extension of the asymmetric hydrogenation of prochiral ketones to enantiomerically enriched alcohols, the reduction of imines has been a topic of interest in obtaining chiral amines of high enantiomeric purity. Several entries to enantiomerically enriched amines based on the approaches outlined above are available. These asymmetric hydrogenations have proved to be more difficult than those for prochiral ketones, but nevertheless show good promise. [Pg.119]

In this chapter, we review the growing family of phospholane-based chiral ligands, and specifically examine their applications in the field of enantioselective hydrogenation. In general, this ligand class has found its broadest applicability in the reduction of prochiral olefins and, to a significantly lesser extent, ketones and imines this is reflected in the composition of the chapter. Several analogous phosphacycle systems have also been included, where appropriate. [Pg.773]

New chiral oxazaborolidines that have been prepared from both enantiomers of optically active inexpensive a-pinene have also given quite good results in the asymmetric borane reduction of prochiral ketones.92 Borane and aromatic ketone coordinate to this structurally rigid oxazaborolidine (+)- or (—)-94, forming a six-membered cyclic chair-like transition state (Scheme 6-41). Following the mechanism shown in Scheme 6-37, intramolecular hydride transfer occurs to yield the product with high enantioselectivity. With aliphatic ketones, poor ee is normally obtained (see Table 6-9). [Pg.370]

Since the discovery of the CBS catalyst system, many chiral //-amino alcohols have been prepared for the synthesis of new oxazoborolidine catalysts. Compounds 95 and 96 have been prepared93 from L-cysteine. Aziridine carbi-nols 97a and 97b have been prepared94 from L-serine and L-threonine, respectively. When applied in the catalytic borane reduction of prochiral ketones, good to excellent enantioselectivity can be attained (Schemes 6-42 and 6-43). [Pg.370]

TABLE 6-9. Asymmetric Reduction of Prochiral Ketones Using 10 mol% of ( + )-94... [Pg.371]

In summary, many attempts have been made at achieving enantioselective reduction of ketones. Modified lithium aluminum hydride as well as the ox-azaborolidine approach have proved to be very successful. Asymmetric hydrogenation catalyzed by a chiral ligand-coordinated transition metal complex also gives good results. Figure 6-7 lists some of the most useful chiral compounds relevant to the enantioselective reduction of prochiral ketones, and interested readers may find the corresponding applications in a number of review articles.77,96,97... [Pg.372]

Various catalytic or stoichiometric asymmetric syntheses and resolutions offer excellent approaches to the chiral co-side chain. Among these methods, kinetic resolution by Sharpless epoxidation,14 amino alcohol-catalyzed organozinc alkylation of a vinylic aldehyde,15 lithium acetylide addition to an alkanal,16 reduction of the corresponding prochiral ketones,17 and BINAL-H reduction18 are all worth mentioning. [Pg.415]


See other pages where Reduction prochiral ketones is mentioned: [Pg.511]    [Pg.131]    [Pg.411]    [Pg.278]    [Pg.247]    [Pg.247]    [Pg.110]    [Pg.219]    [Pg.259]    [Pg.220]    [Pg.83]    [Pg.155]    [Pg.155]    [Pg.10]    [Pg.105]    [Pg.106]    [Pg.114]    [Pg.354]    [Pg.2]    [Pg.55]    [Pg.1194]    [Pg.143]   
See also in sourсe #XX -- [ Pg.117 , Pg.122 ]




SEARCH



Prochiral

Prochiral ketones

Prochirality

© 2024 chempedia.info