Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Prochiral alcohols

The enantioselective isomerization of the prochiral alcohols 27 and 28 has also been achieved with 1 mol % of Rh-BINAP catalyst (eqs 3.10 and 3.11) [17], However, neither chemo- nor enantioselectivity was sufficiently high, though the enantiomeric excesses of the products were much higher than the values hitherto reported [3a], The formation of the S-configuration at C(3) of the aldehyde produced from the E-double bond of the starting alcohol is again the same as the situation observed for the isomerization of allylamine (Scheme 3.1). [Pg.158]

Tridentate salen ligands (10) derived from 1 have given excellent results in the enantiocontrol of the hetero Diels-Alder addition reaction of dienes with aldehydes (eq 7) and in the asymmetric additions of TMS-azide to mc5o-epoxide and trimethylsilyl cyanide to benzaldehyde (up to 85% ee). Phosphino-oxazolines derived from 1 have been employed for the asymmetric control of palladium-catalyzed allylic substitution reactions products of 70-90% ee were obtained. Photolysis of crystalline adducts of enantiomerically pure 1 with prochiral alcohols results in asymmetric inductions of up to 79% in a rare example of a solid-state enantioselective reaction. ... [Pg.29]

Among the carbon electrophiles, carbonyl compounds [113,114] were first applied in the reaction with lithiated ferrocenylalkyl amines (Sect. 4.S.3.3 and Fig. 4-18). Analogously, carboxylic acids are obtained from CO2 [153]. The reactivity pattern of palladated ferrocenylalkyl amines with carbon electrophiles is somewhat different. Carbon monoxide in alcohols leads to the formation of esters of substituted ferrocenecarboxylic acids [124]. With prochiral alcohols, a moderate asymmetric induction is observed [154]. a, -Unsaturated ketones react with palladated ferrocenylalkyl amines not with addition to the carbonyl group, but with substitution of a hydrogen at the carbon—carbon double bond, allowing the introduction of longer side chains at the ferrocene ring (Fig. 4-27c) [124, 152]. [Pg.205]

In addition to the fact that the reagent s ingredients are commercially available, the reaction is promiscuous and proceeds in good chemical yield with excellent enantiomeric excesses. The reaction, however, does suffer when bulky substituents are cis to the hydroxymethyl functionality (R in Figure 1). For prochiral alcohols, the absolute stereochemistry of the transformation is predictable, whereas for a chiral alcohol, the diastereofacial selectivity of the reagent is often sufficient to override those preferences inherent in the substrate. When the chiral atom is in the -p-position of the allyl alcohol (R ), then the epoxidation can be controlled to access either diastereoface of the alkene. In contrast, when the chirality is at either the a- or Z-P-positions (R or R ), the process is likely to give selective access of the reagent from only one of the two diastereotopic faces [6,12]. Many examples of substrates for the epoxidation protocol are known [1,13,14]. [Pg.228]

Having developed an efficient artificial transfer hydrogenase, we attempted to apply the same methodology to the reverse reaction the kinetic resolution of racemic alcohols. To our disappointment, we were forced to use strong oxidizing agents (eg. f-BuOOH rather than acetone, in the spirit of an Oppenauer-type mechanism) to drive the reaction to completion. We speculate that, in the presence of water, the ruthenium is unable to abstract the j8-hydrogen on the prochiral alcohol. [Pg.371]

Evans PA, Cui J, Buffone GP. Diastereoselective temporary silicon-tethered ring-closing-metathesis reactions with prochiral alcohols a new approach to long-range asymmetric induction. Angew. Ghem. Int. Ed. 2003 42 1734-1737. [Pg.726]

One example of a prochiral alcohol is 2-substituted 1,3-propanediol. Guanti et al. investigated the effect of unsaturation adjacent to the prochiral center in Hpase-catalyzed hydrolyses of propanediol diacetates (Scheme 13) [115]. TTie reactions almost stopped at the monoacetate stage and the various products were obtained with (5) configuration in 20-80% isolated yields and in 20 to more than 96% e.e. [Pg.646]

A number of examples of monoacylated diols produced by enzymatic hydrolysis of prochiral carboxylates are presented in Table 3. PLE-catalyzed conversions of acycHc diesters strongly depend on the stmcture of the substituent and are usually poor for alkyl derivatives. Lipases are much less sensitive to the stmcture of the side chain the yields and selectivity of the hydrolysis of both alkyl (26) and aryl (24) derivatives are similar. The enzyme selectivity depends not only on the stmcture of the alcohol, but also on the nature of the acyl moiety (48). [Pg.335]

In contrast to the hydrolysis of prochiral esters performed in aqueous solutions, the enzymatic acylation of prochiral diols is usually carried out in an inert organic solvent such as hexane, ether, toluene, or ethyl acetate. In order to increase the reaction rate and the degree of conversion, activated esters such as vinyl carboxylates are often used as acylating agents. The vinyl alcohol formed as a result of transesterification tautomerizes to acetaldehyde, making the reaction practically irreversible. The presence of a bulky substituent in the 2-position helps the enzyme to discriminate between enantiotopic faces as a result the enzymatic acylation of prochiral 2-benzoxy-l,3-propanediol (34) proceeds with excellent selectivity (ee > 96%) (49). In the case of the 2-methyl substituted diol (33) the selectivity is only moderate (50). [Pg.336]

Chiral Alcohols and Lactones. HLAT) has been widely used for stereoselective oxidations of a variety of prochiral diols to lactones on a preparative scale. In most cases pro-(3) hydroxyl is oxidized irrespective of the substituents. The method is apphcable among others to tit-1,2-bis(hydroxymethyl) derivatives of cyclopropane, cyclobutane, cyclohexane, and cyclohexene. Resulting y-lactones are isolated in 68—90% yields and of 100% (164,165). [Pg.347]

The remarkable stereospecificity of TBHP-transition metal epoxidations of allylic alcohols has been exploited by Sharpless group for the synthesis of chiral oxiranes from prochiral allylic alcohols (Scheme 76) (81JA464) and for diastereoselective oxirane synthesis from chiral allylic alcohols (Scheme 77) (81JA6237). It has been suggested that this latter reaction may enable the preparation of chiral compounds of complete enantiomeric purity cf. Scheme 78) ... [Pg.116]

The hydride-donor class of reductants has not yet been successfully paired with enantioselective catalysts. However, a number of chiral reagents that are used in stoichiometric quantity can effect enantioselective reduction of acetophenone and other prochiral ketones. One class of reagents consists of derivatives of LiAlH4 in which some of die hydrides have been replaced by chiral ligands. Section C of Scheme 2.13 shows some examples where chiral diols or amino alcohols have been introduced. Another type of reagent represented in Scheme 2.13 is chiral trialkylborohydrides. Chiral boranes are quite readily available (see Section 4.9 in Part B) and easily converted to borohydrides. [Pg.110]

In order to broaden the field of biocatalysis in ionic liquids, other enzyme classes have also been screened. Of special interest are oxidoreductases for the enan-tioselective reduction of prochiral ketones [40]. Formate dehydrogenase from Candida boidinii was found to be stable and active in mixtures of [MMIM][MeS04] with buffer (Entry 12) [41]. So far, however, we have not been able to find an alcohol dehydrogenase that is active in the presence of ionic liquids in order to make use of another advantage of ionic liquids that they increase the solubility of hydrophobic compounds in aqueous systems. On addition of 40 % v/v of [MMIM][MeS04] to water, for example, the solubility of acetophenone is increased from 20 mmol to 200 mmol L ... [Pg.342]

Closely related to the concept of chirality, and particularly important in biological chemistry, is the notion of prochirality. A molecule is said to be prochiral if can be converted from achiral to chiral in a single chemical step. For instance, an unsymmetrical ketone like 2-butanone is prochiral because it can be converted to the chiral alcohol 2-butanol by addition of hydrogen, as we ll see in Section 17.4. [Pg.315]

The hand-in-glove fit of a chiral substrate into a chiral receptor is relatively straightforward, but it s less obvious how a prochiral substrate can undergo a selective reaction. Take the reaction of ethanol with NAD+ catalyzed by yeast alcohol dehydrogenase. As we saw at the end of Section 9.13, the reaction occurs with exclusive removal of the pro-R hydrogen from ethanol and with addition only to the Re face of the NAD+ carbon. [Pg.319]

Step 2 of Figure 29.12 Isomerization Citrate, a prochiral tertiary alcohol, is next converted into its isomer, (2, 35)-isocitrate, a chiral secondary alcohol. The isomerization occurs in two steps, both of which are catalyzed by the same aconitase enzyme. The initial step is an ElcB dehydration of a /3-hydroxy acid to give cfs-aconitate, the same sort of reaction that occurs in step 9 of glycolysis (Figure 29.7). The second step is a conjugate nucleophilic addition of water to the C=C bond (Section 19.13). The dehydration of citrate takes place specifically on the pro-R arm—the one derived from oxaloacetate—rather than on the pro-S arm derived from acetyl CoA. [Pg.1156]

Preeclampsia, Viagra and, 164 Prelog, Vladimir, 181 Prepolymer, epoxy resins and, 673 Priestley, Joseph, 245 Primary alcohol, 600 Primary amine, 916 Primary carbon. 84 Primary hydrogen, 85 Primary structure (protein), 1038 Primer strand (DNA), 1108 pro-R prochiralitv center, 316 pro-S prochirality center, 316 Problems, how to work, 27 Procaine, structure of, 32 Prochirality, 315-317 assignment of, 315-316 naturally occurring molecules and, 316-317... [Pg.1312]

In contrast to the asymmetric procedures discussed above, the metal-catalyzed oxidation of alkyl aryl sulphides by t-butylhydroperoxide carried out in a chiral alcohol gives rise to chiral sulphoxides of low optical purity290 (e.e. 0.6 9.8%). Similarly, a very low asymmetric induction was noted when prochiral sulphides were oxidized by sodium metaperiodate in chiral alcohols as solvents291. [Pg.291]

Optically active sulphoxides were also obtained in low optical and chemical yields by the oxidation of prochiral sulphides with IV-bromocaprolactam and a chiral alcohol as a solvent321, or by treatment of sulphides with chiral N-chlorocaprolactam and water as oxidant322. [Pg.295]

The second group of studies tries to explain the solvent effects on enantioselectivity by means of the contribution of substrate solvation to the energetics of the reaction [38], For instance, a theoretical model based on the thermodynamics of substrate solvation was developed [39]. However, this model, based on the determination of the desolvated portion of the substrate transition state by molecular modeling and on the calculation of the activity coefficient by UNIFAC, gave contradictory results. In fact, it was successful in predicting solvent effects on the enantio- and prochiral selectivity of y-chymotrypsin with racemic 3-hydroxy-2-phenylpropionate and 2-substituted 1,3-propanediols [39], whereas it failed in the case of subtilisin and racemic sec-phenetyl alcohol and traws-sobrerol [40]. That substrate solvation by the solvent can contribute to enzyme enantioselectivity was also claimed in the case of subtilisin-catalyzed resolution of secondary alcohols [41]. [Pg.13]

Enzymatic desymmetrization of prochiral or meso-alcohols to yield enantiopure building blocks is a powerful tool in the synthesis of natural products. For example, a synthesis ofconagenin, an immunomodulator isolated from a Streptomyces, involved two enzymatic desymmetrizations [149]. The syn-syn triad of the add moiety was prepared via a stereoselective acylation of a meso-diol, whereas the amine fragment was obtained by the PLE-catalyzed hydrolysis of a prochiral malonate (Figure 6.56). [Pg.154]

Overman LE, Owen CE, Pavan MM, Richards CJ (2003) Catalytic asymmetric rearrangement of allylic N-aryl trifluoroacetimidates. A useful method for transforming prochiral allylic alcohols to chiral allylic amines. Org Lett 5 1809-1812... [Pg.173]


See other pages where Prochiral alcohols is mentioned: [Pg.195]    [Pg.125]    [Pg.1006]    [Pg.377]    [Pg.520]    [Pg.139]    [Pg.139]    [Pg.245]    [Pg.195]    [Pg.125]    [Pg.1006]    [Pg.377]    [Pg.520]    [Pg.139]    [Pg.139]    [Pg.245]    [Pg.278]    [Pg.323]    [Pg.247]    [Pg.247]    [Pg.134]    [Pg.106]    [Pg.51]    [Pg.309]    [Pg.693]    [Pg.266]    [Pg.115]    [Pg.151]    [Pg.171]    [Pg.195]    [Pg.219]    [Pg.68]    [Pg.72]   
See also in sourсe #XX -- [ Pg.571 ]




SEARCH



Prochiral

Prochirality

© 2024 chempedia.info