Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol dehydrogenase yeast

As another example, studies with deuterium-labeled substrates have shown that the reaction of ethanol with the coenzyme NAD+ catalyzed by yeast alcohol dehydrogenase occurs with exclusive removal of the pro-R hydrogen from ethanol and with addition only to the Re face of NAD+. [Pg.317]

Yeast alcohol dehydrogenase, 5. 1009 cobalt-containing, 5, 1013 manganese-containing, S, 1014 Yeast enolase activation... [Pg.249]

Yeast alcohol dehydrogenase (YADH) Saccharomyces cerevisiae [21]... [Pg.232]

Materials. Microspherical PGG glucan (Adjuvax, Alpha-Beta Technology, Worcester, MA) was prepared from Saccharomyces cereviseae strain R4 cells (11). Zymosan, cytochrome c (cyt c), bovine serum albumin (BSA), yeast alcohol dehydrogenase (ADH), Complete Freunds Adjuvant (CFA) and Incomplete Freunds Adjuvant (IFA) were purchased from Sigma Chemical Co. (St. Louis, MO). [Pg.55]

Yeast alcohol dehydrogenase is one of the most widely used enzymes. [Pg.467]

Chan, J.K., and Anderson, B.M. (1975) A novel diazonium-sulfhydryl reaction in the inactivation of yeast alcohol dehydrogenase by diazotized 3-aminopyridine adenine dinucleotide. J. Biol. Chem. 250, 67-72. [Pg.1053]

The inactivation of enzymes containing the zinc-thiolate moieties by peroxynitrite may initiate an important pathophysiological process. In 1995, Crow et al. [129] showed that peroxynitrite disrupts the zinc-thiolate center of yeast alcohol dehydrogenase with the rate constant of 3.9 + 1.3 x 1051 mol-1 s-1, yielding the zinc release and enzyme inactivation. Later on, it has been shown [130] that only one zinc atom from the two present in the alcohol dehydrogenase monomer is released in the reaction with peroxynitrite. Recently, Zou et al. [131] reported the same reaction of peroxynitrite with endothelial NO synthase, which is accompanied by the zinc release from the zinc-thiolate cluster and probably the formation of disulfide bonds between enzyme monomers. The destruction of zinc-thiolate cluster resulted in a decrease in NO synthesis and an increase in superoxide production. It has been proposed that such a process might be the mechanism of vascular disease development, which is enhanced by diabetes mellitus. [Pg.705]

Benzyl alcohol can be produced from benzaldehyde (S) by a dehydrogenation reaction catalyzed by yeast alcohol dehydrogenase (YADH). Nikolova et al. (1995) obtained initial-rate data for this reaction using immobilized YADH immersed in iso-octane with 1% v/v water. The following data were obtained ... [Pg.277]

Because the direct electrochemical oxidation of NAD(P)H has to take place at an anode potential of + 900 mV vs NHE or more, only rather oxidation-stable substrates can be transformed without loss of selectivity—thus limiting the applicability of this method. The electron transfer between NADH and the anode may be accellerated by the use of a mediator. At the same time, electrode fouling which is often observed in the anodic oxidation of NADH can be prevented. Synthetic applications have been described for the oxidation of 2-hexene-l-ol and 2-butanol to 2-hexenal and 2-butanone catalyzed by yeast alcohol dehydrogenase (YADH) and the alcohol dehydrogenase from Thermoanaerobium brockii (TBADH) repectively with indirect electrochemical... [Pg.97]

It is worth noting that finding a secondary a-deuterium KIE larger than the EIE is not unique. In fact, it has been found in several other reactions. For instance, Cleland and co-workers (Cook et al., 1980,1981 Cook and Cleland, 1981a,b) found unexpectedly large secondary a-deuterium KIEs in some enzymatic reactions for example, a secondary a-deuterium KIE of 1.22 for the reduction of acetone catalysed by yeast alcohol dehydrogenase and a KIE of 1.34 for the reduction of cyclohexanone catalysed by horse-liver dehydrogenase. [Pg.214]

Deviations from equation (57) have also been used to demonstrate that tunnelling is important in the enzyme-catalysed oxidation of benzyl alcohol to benzaldehyde by NAD+ and yeast alcohol dehydrogenase (YADH) (reaction (60)) (Cha et al., 1989 Klinman, 1991). [Pg.227]

Table 40 The primary and secondary deuterium-tritium and hydrogen-tritium KIEs for the oxidation of benzyl alcohol to benzaldehyde with NAD+ and yeast alcohol dehydrogenase at 25°C.a... Table 40 The primary and secondary deuterium-tritium and hydrogen-tritium KIEs for the oxidation of benzyl alcohol to benzaldehyde with NAD+ and yeast alcohol dehydrogenase at 25°C.a...
The liver alcohol dehydrogenase mentioned in the preceding section has the same pro-R stereospecificity for NAD and ethanol as yeast alcohol dehydrogenase. Furthermore, the oxidation of ethanol by a microsomal oxidizing system, or by catalase and H2O2, likewise proceeds with pro-R stereospecificity for the ethanol77>. The catalase-H2C>2 system is so very different, however, from the pyridine nucleotide dehydrogenase, that one wonders whether the similarity in stereospecificity for ethanol is fortuitous. [Pg.55]

Yeast alcohol dehydrogenase, catalysis of oxidation by NAD of benzyl alcohol equilibrium interconversion of benzyl alcohol and benzaldehyde... [Pg.39]

Yeast alcohol dehydrogenase (YADH), catalysis of reduction by NADH of acetone formate dehydrogenase (FDH), oxidation by NAD of formate horse-liver alcohol dehydrogenase (HLAD), catalysis of reduction by NADH of cyclohexanone With label in NADH, the secondary KIE is 1.38 for reduction of acetone (YADH) with label in NAD, the secondary KIE is 1.22 for oxidation of formate (FDH) with label in NADH, the secondary KIE is 1.50 for reduction of cyclohexanone (HLAD). The exalted secondary isotope effects were suggested to originate in reaction-coordinate motion of the secondary center. [Pg.40]

In the following year, Cleland and his coworkers reported further and more emphatic examples of the phenomenon of exaltation of the a-secondary isotope effects in enzymic hydride-transfer reactions. The cases shown in Table 1 for their studies of yeast alcohol dehydrogenase and horse-liver alcohol dehydrogenase would have been expected on traditional grounds to show kinetic isotope effects between 1.00 and 1.13 but in fact values of 1.38 and 1.50 were found. Even more impressively, the oxidation of formate by NAD was expected to exhibit an isotope effect between 1.00 and 1/1.13 = 0.89 - an inverse isotope effect because NAD" was being converted to NADH. The observed value was 1.22, normal rather than inverse. Again the model of coupled motion, with a citation to Kurz and Frieden, was invoked to interpret the findings. [Pg.41]

A few years later, Cha, Murray and Klinman published a report on isotope effects in the redox interconversion of benzyl alcohol-benzaldehyde/NAD -NADH, with catalysis by yeast alcohol dehydrogenase. This article effected among biochemists... [Pg.43]

Experiments with the oxidation of benzyl alcohol by NAD, catalyzed by yeast alcohol dehydrogenase, yielded =. 12 —. 16 (standard... [Pg.48]

To test the hypothesis that the conformational flexibility of the thermophilic enzyme is lower at room temperature than at higher temperatures, Kohen and Klinman measured, by FTIR, the time course of H/D exchange of protein N-H sites in deuterium oxide for the thermophilic alcohol dehydrogenase. Their measurements were made at the optimal host-organism temperature of 65 °C and at 25 °C, below the transition temperature. They also included yeast alcohol dehydrogenase at 25 °C, which is the optimal temperature for its own host organism. [Pg.62]

Welsh, K.M., Creighton, D.J. and Khnman, J.P. (1980). Transition-state structure in the yeast alcohol dehydrogenase reaction the magnitude of solvent and alpha-secondary hydrogen isotope effects. Biochemistry 19, 2005-2016... [Pg.75]

Klinman, J.P. (1976). Isotope effects and structure-reactivity correlations in the yeast alcohol dehydrogenase reaction. A study of the enzyme-catalyzed oxidation of aromatic alcohols. Biochemistry 15, 2018-2026... [Pg.75]

K. F. Gu and T. M. S. Chang, Conversion of ammonia or urea into essential amino acids, using artificial cells containing an immobilized multienzyme system and dextran-NAD+ 2. Yeast alcohol dehydrogenase for coenzyme recycling, Biotechnol. Appl. Biochem., 12, 227-236 (1990). [Pg.143]

C. J. Dickenson and F. M. Dickinson, A study of pH and temperature dependence of the reaction of yeast alcohol dehydrogenase with ethanol, acetaldehyde and butyraldehyde, Biochem. J., 147, 303-311 (1975). [Pg.145]

Isotope effects have also been applied extensively to studies of NAD+/NADP+-linked dehydrogenases. We typically treat these enzymes as systems whose catalytic rates are limited by product release. Nonetheless, Palm clearly demonstrated a primary tritium kinetic isotope effect on lactate dehydrogenase catalysis, a finding that indicated that the hydride transfer step is rate-contributing. Plapp s laboratory later demonstrated that liver alcohol dehydrogenase has an intrinsic /ch//cd isotope effect of 5.2 with ethanol and an intrinsic /ch//cd isotope effect of 3-6-4.3 with benzyl alcohol. Moreover, Klin-man reported the following intrinsic isotope effects in the reduction of p-substituted benzaldehydes by yeast alcohol dehydrogenase kn/ko for p-Br-benzaldehyde = 3.5 kulki) for p-Cl-benzaldehyde = 3.3 kulk for p-H-benzaldehyde = 3.0 kulk for p-CHs-benzaldehyde = 5.4 and kn/ko for p-CHsO-benzaldehyde = 3.4. [Pg.406]

Val Valine or valyl YADH Yeast alcohol dehydrogenase... [Pg.809]

Different purified or partially purified enzymes were tested successfully, such as horse liver dehydrogenase [3], Sulfolobus solfataricus dehydrogenase [4], Pischia pastoris alcohol oxidase [5, 6], the baker s yeast alcohol dehydrogenase [7], and finally lipolytic enzymes, which probably constitute the major part of the work devoted to the use of enzymes working at the solid/gas interface, as summarized in a recent publication [8]. [Pg.256]


See other pages where Alcohol dehydrogenase yeast is mentioned: [Pg.551]    [Pg.106]    [Pg.32]    [Pg.265]    [Pg.150]    [Pg.335]    [Pg.57]    [Pg.1029]    [Pg.260]    [Pg.41]    [Pg.62]    [Pg.316]    [Pg.79]    [Pg.66]    [Pg.20]    [Pg.59]    [Pg.186]    [Pg.203]    [Pg.53]    [Pg.7]    [Pg.498]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Active site yeast alcohol dehydrogenase

Alcohol dehydrogenase

Alcohol dehydrogenases

Alcohol yeast

Baker’s yeast alcohol dehydrogenases

Cysteine residues yeast alcohol dehydrogenase

Dehydrogenases alcohol dehydrogenase

Enzymes dehydrogenase, yeast alcohol

Yeast alcohol dehydrogenase YADH)

Yeast alcohol dehydrogenase activation

Yeast alcohol dehydrogenase and

Yeast alcohol dehydrogenase source

Yeast alcohol dehydrogenase stereochemistry

Yeast alcohol dehydrogenases

© 2024 chempedia.info