Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Processive enzymatic reaction

Process Va.ria.tlons. The conventional techniques for tea manufacture have been replaced in part by newer processing methods adopted for a greater degree of automation and control. These newer methods include withering modification (78), different types of maceration equipment (79), closed systems for fermentation (80), and fluid-bed dryers (81). A thermal process has been described which utilizes decreased time periods for enzymatic reactions but depends on heat treatment at 50—65°C to develop black tea character (82). It is claimed that tannin—protein complex formation is decreased and, therefore, greater tannin extractabiUty is achieved. Tea value is beheved to be increased through use of this process. [Pg.372]

Computer simulation techniques offer the ability to study the potential energy surfaces of chemical reactions to a high degree of quantitative accuracy [4]. Theoretical studies of chemical reactions in the gas phase are a major field and can provide detailed insights into a variety of processes of fundamental interest in atmospheric and combustion chemistry. In the past decade theoretical methods were extended to the study of reaction processes in mesoscopic systems such as enzymatic reactions in solution, albeit to a more approximate level than the most accurate gas-phase studies. [Pg.221]

Enzymatic reactions frequently undergo a phenomenon referred to as substrate inhibition. Here, the reaction rate reaches a maximum and subsequently falls as shown in Eigure 11-lb. Enzymatic reactions can also exhibit substrate activation as depicted by the sigmoidal type rate dependence in Eigure 11-lc. Biochemical reactions are limited by mass transfer where a substrate has to cross cell walls. Enzymatic reactions that depend on temperature are modeled with the Arrhenius equation. Most enzymes deactivate rapidly at temperatures of 50°C-100°C, and deactivation is an irreversible process. [Pg.838]

Almost all types of cell can be used to convert an added compound into another compound, involving many forms of enzymatic reaction including dehydration, oxidation, hydroxyla-tion, animation, isomerisation, etc. These types of conversion have advantages over chemical processes in that the reaction can be very specific, and produced at moderate temperatures. Examples of transformations using enzymes include the production of steroids, conversion of antibiotics and prostaglandins. Industrial transformation requires the production of large quantities of enzyme, but the half-life of enzymes can be improved by immobilisation and extraction simplified by the use of whole cells. [Pg.6]

The class of proton transfer (PT) reactions plays a major role in many biological processes, including various enzymatic reactions. This class of reactions will be served here as a general example and an introduction for more complicated reactions. As a specific demonstration let s consider a proton transfer between Cys 25 and His 159 in papain. This reaction can be formally described as... [Pg.140]

Today SCFs are used for natural product extractions, chromatographic separations, pollution prevention, material processing and as solvents for chemical reactions.[75-77] Chemical applications include catalysis, polymerization, enzymatic reactions and organic synthesis. [Pg.284]

Assuming that the enzymatic reaction is highly enantioselective, then even after only four cycles the enantiomeric excess will have reached 93.4% whereas after seven catalytic cycles the enantiomeric excess is >99% (Figure 5.3). This type of deracemization is really a stereoinversion process in that the reactive enantiomer undergoes stereoinversion during the process. One of the challenges of developing this type of process is to find conditions under which the enzyme catalyst and chemical reactant can coexist, particularly in the case of redox chemistry in which the coexistence of an oxidant and reductant in the same reaction vessel is difficult to achieve. For this... [Pg.116]

Sulfite reductase catalyzes the six-electron reduction of sulfite to sulfide, m essential enzymatic reaction in the dissimilatory sulfate reduction process. Several different types of dissimilatory sulfite reductases were already isolated from sulfate reducers, namely desul-foviridin (148-150), desulforubidin (151, 152), P-582 (153, 154), and desulfofuscidin (155). In addition to these four enzymes, an assimila-tory-type sulfite reductase was also isolated from D. vulgaris. Although all these enzymes have significantly different subunit composition and amino acid sequences, it is interesting to note that, as will be discussed later, all of them share a unique type of cofactor. [Pg.386]

Enhanced thermal stability enlarges the areas of application of protein films. In particular it might be possible to improve the yield of reactors in biotechnological processes based on enzymatic catalysis, by increasing the temperature of the reaction and using enzymes deposited by the LB technique. Nevertheless, a major technical difficulty is that enzyme films must be deposited on suitable supports, such as small spheres, in order to increase the number of enzyme molecules involved in the process, thus providing a better performance of the reactor. An increased surface-to-volume ratio in the case of spheres will increase the number of enzyme molecules in a fixed reactor volume. Moreover, since the major part of known enzymatic reactions is carried out in liquid phase, protein molecules must be attached chemically to the sphere surface in order to prevent their detachment during operation. [Pg.156]

H)2-D3 is produced by a complex series of enzymatic reactions that involve the plasma transport of precursor molecules to a number of different tissues (Figure 42-9). One of these precursors is vitamin D—really not a vitamin, but this common name persists. The active molecule, l,25(OH)2-D3, is transported to other organs where it activates biologic processes in a manner similar to that employed by the steroid hormones. [Pg.445]

A Box-Behnken design was employed to investigate statistically the main and interactive effects of four process variables (reaction time, enzyme to substrate ratio, surfactant addition, and substrate pretreatment) on enzymatic conversion of waste office paper to sugars. A response surface model relating sugar yield to the four variables was developed on the basis of the experimental results. The model could be successfully used to identify the most efficient combination of the four variables for maximizing the extent of sugar production. [Pg.121]

The use of ionic liquids (ILs) to replace organic or aqueous solvents in biocatalysis processes has recently gained much attention and great progress has been accomplished in this area lipase-catalyzed reactions in an IL solvent system have now been established and several examples of biotransformation in this novel reaction medium have also been reported. Recent developments in the application of ILs as solvents in enzymatic reactions are reviewed. [Pg.3]

Although decarboxylation reaction seems to be a simple one-carbon removing reaction, it is demonstrated that this reaction is a unique and useful reaction in the preparation of optically active carboxylic acids. If the starting material is a racemic carboxylic acid, the optically active compound can be obtained via symmetrization by chemical carboxylation followed by asymmetrization via enzymatic reaction. Accordingly, the whole process can be said as chemicoenzymatic deracemization (Fig. 24). [Pg.339]

Since many years, pectolytic enzymes have been widely used in industrial beverage processing to improve either the quality and the yields in fruit juice extraction or the characteristics of the final product [1,2]. To this purpose, complex enzymatic mixtures, containing several pectolytic enzymes and often also cellulose, hemicellulose and ligninolytic activities, are usually employed in the free form. The interactions among enzymes, substrates and other components of fruit juice make the system very difficult to be investigated and only few publications are devoted to the study of enzymatic pools [3-5], An effective alternative way to carry out the depectinisation process is represented by the use of immobilized enzymes. This approach allows for a facile and efficient enzymatic reaction control to be achieved. In fact, it is possible to avoid or at least to reduce the level of extraneous substances originating from the raw pectinases in the final product. In addition, continuous processes can be set up. [Pg.971]

A second liquid phase may be deliberately employed in an emulsified form to gain advantages similar to those cited earlier for organic processes. Such two-phase systems, and even two-phase enzymatic reactions, allow both the electrochemistry and organic chemistry to take place in their optimum medium. Further, the aqueous phase allows acidity to be controlled in the organic medium and the organic phase allows the desired intermediate product to be extracted to improve yields. [Pg.167]

P. Mitchell (Nobel Prize for Chemistry, 1978) explained these facts by his chemiosmotic theory. This theory is based on the ordering of successive oxidation processes into reaction sequences called loops. Each loop consists of two basic processes, one of which is oriented in the direction away from the matrix surface of the internal membrane into the intracristal space and connected with the transfer of electrons together with protons. The second process is oriented in the opposite direction and is connected with the transfer of electrons alone. Figure 6.27 depicts the first Mitchell loop, whose first step involves reduction of NAD+ (the oxidized form of nicotinamide adenosine dinucleotide) by the carbonaceous substrate, SH2. In this process, two electrons and two protons are transferred from the matrix space. The protons are accumulated in the intracristal space, while electrons are transferred in the opposite direction by the reduction of the oxidized form of the Fe-S protein. This reduces a further component of the electron transport chain on the matrix side of the membrane and the process is repeated. The final process is the reduction of molecular oxygen with the reduced form of cytochrome oxidase. It would appear that this reaction sequence includes not only loops but also a proton pump, i.e. an enzymatic system that can employ the energy of the redox step in the electron transfer chain for translocation of protons from the matrix space into the intracristal space. [Pg.477]

Step 1. An enzymatic reaction is considered as a cyclic process that displays all the interconversions among the various enzyme forms involved. For each step in the reaction a rate constant is defined in terms of the product of the actual rate constant for that step and the concentration of free substrate involved in the step. Hence, the cyclic form of the reaction scheme given in Equations 17.6, 17.7, and 17.8 is represented by... [Pg.682]


See other pages where Processive enzymatic reaction is mentioned: [Pg.229]    [Pg.233]    [Pg.99]    [Pg.229]    [Pg.233]    [Pg.99]    [Pg.403]    [Pg.78]    [Pg.44]    [Pg.372]    [Pg.321]    [Pg.566]    [Pg.576]    [Pg.712]    [Pg.781]    [Pg.199]    [Pg.567]    [Pg.202]    [Pg.97]    [Pg.98]    [Pg.103]    [Pg.123]    [Pg.28]    [Pg.30]    [Pg.18]    [Pg.206]    [Pg.228]    [Pg.587]    [Pg.71]    [Pg.75]    [Pg.264]    [Pg.299]    [Pg.533]    [Pg.98]    [Pg.113]    [Pg.94]   
See also in sourсe #XX -- [ Pg.509 ]




SEARCH



Enzymatic processes

Reaction Enzymatic reactions

© 2024 chempedia.info