Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Processing on the rate

In the design of an industrial scale reactor for a new process, or an old one that employs a new catalyst, it is common practice to carry out both bench and pilot plant studies before finalizing the design of the commercial scale reactor. The bench scale studies yield the best information about the intrinsic chemical kinetics and the associated rate expression. However, when taken alone, they force the chemical engineer to rely on standard empirical correlations and prediction methods in order to determine the possible influence of heat and mass transfer processes on the rates that will be observed in industrial scale equipment. The pilot scale studies can provide a test of the applicability of the correlations and an indication of potential limitations that physical processes may place on conversion rates. These pilot plant studies can provide extremely useful information on the temperature distribution in the reactor and on contacting patterns when... [Pg.246]

The rates at which chemical transformations take place are in some circumstances strongly influenced by mass and heat transfer processes (see Sections 12.3 to 12.5). In the design of heterogeneous catalytic reactors, it is essential to utilize a rate expression that takes into account the influence of physical transport processes on the rate at which reactants are converted to products. Smith (93) has popularized the use of the term global reaction rate to characterize the overall rate of transformation of reactants to... [Pg.488]

The measurement of mass accommodation coefficients is a difficult task. In 1975 Sherwood et al. (6) wrote "Not only is there no useful theory to employ in predicting the 7, there is no easy way to experimentally measure it. The experimental problem is due to the difficulty of separating the effects of the various processes on the rate of gas uptake. [Pg.505]

The pseudospin methodology is widely used not only for the description of hydrogen containing ferro- and antiferroelectrics, but also for the study of many other systems with hydrogen bonds. In particular, the pseudospin methodology was applied by Silbey and Trommsdorff [99] for examining the influence of two-phonon process on the rate constant of molecular compounds. In the next sections we will also employ the pseudospin formalism for the investigation of some problems where protons are exemplified by the cooperative behavior. [Pg.371]

To illustrate the effect of the reverse process on the rate of flocculation, we solved numerically the set of Equations 5.319, 5.331, and 5.332. To simplify the problem, we used the following assumptions (1) the von Smoluchowski assumption that all rate constants of the straight process are equal to Up (2) aggregates containing more than M particles cannot decay (3) all rate constants... [Pg.263]

A typical catalyst for the acrolein oxidation composed mainly of Mo-, V-, Cu-oxides was prepared according to the patent specification EP 17000. In order to avoid the influence of mass transfer processes on the rate of conversion pellets of egg shell type with a thin active layer of about 200 pm thickness were used for the kinetic measurements. [Pg.394]

Here nh np and nk are the number concentrations of particles of sizes i, j, and k in the epilimnion and nfc in is the number concentration of fc-size particles in river inflows. The term X(i,j)s incorporates most of the effects of physical processes on the rate at which particles of size i and j come into close proximity. The subscript S is used to indicate that Smoluchowski s approach (1917) to the kinetics of particle transport has been adopted. Smoluchowski did not consider hydro-dynamic retardation in his early analysis, and it has not been included here in Mi,j)s. A more rigorous approach is possible (Valiolis and List, 1984a, b). The term a(i J)s incorporates chemical factors that retard the kinetics of aggregation between particles of size i and j and also those aspects of the kinetics of particle transport that are not included in Smoluchowski s analysis. The Stokes settling velocity of a particle of size k is denoted as vk the mean depth of the epilimnion is zc qin and qoul refer to river flows into and out of the lake expressed as volume of water per unit of lake surface area and time (the sum of such inflows or outflows is also termed the areal hydraulic loading of the lake). The symbol W refers to all processes of production or destruction of particles in the epilimnion it can include a variety of chemical and biological processes. [Pg.459]

Most processes are catalyzed where catalysts for the reaction are known. The choice of catalyst is crucially important. Catalysts increase the rate of reaction but are unchanged in quantity and chemical composition at the end of the reaction. If the catalyst is used to accelerate a reversible reaction, it does not by itself alter the position of the equilibrium. When systems of multiple reactions are involved, the catalyst may have different effects on the rates of the different reactions. This allows catalysts to be developed which increase the rate of the desired reactions relative to the undesired reactions. Hence the choice of catalyst can have a major influence on selectivity. [Pg.46]

To evaluate design options and carry out preliminary process optimization, simple economic criteria are required. What happens to the revenue from product sales after the process has been commissioned The sales revenue first pays for fixed costs which are independent of the rate of production. Variable costs, which do depend on the rate of production, also must be met. After this, taxes are deducted to leave the net profit. [Pg.405]

Electrochemistry is concerned with the study of the interface between an electronic and an ionic conductor and, traditionally, has concentrated on (i) the nature of the ionic conductor, which is usually an aqueous or (more rarely) a non-aqueous solution, polymer or superionic solid containing mobile ions (ii) the structure of the electrified interface that fonns on inunersion of an electronic conductor into an ionic conductor and (iii) the electron-transfer processes that can take place at this interface and the limitations on the rates of such processes. [Pg.559]

Viggiano A A, Morris R A and Paulson J F 1994 Effects of f and SFg vibrational energy on the rate constant for charge transfer between and SFg int. J. Mass Spectrom. ion Processes 135 31-7... [Pg.828]

In view of the remarkable effects that water can exert on the uncatalysed Diels-Alder reaction, there might well be a similar effect on the rate and the selectivity of the Lewis-acid catalysed process. At the same time, coordination of a Lewis-acid to a Diels-Alder reagent is likely to overcome the... [Pg.31]

What is the effect of water on the rate and selectivity of the Lewis-acid catalysed Diels-Alder reaction, when compared to oiganic solvents Do hydrogen bonding and hydrophobic interactions also influence the Lewis-acid catalysed process Answers to these questions will be provided in Chapter 2. [Pg.32]

In order to obtain more insight into the local environment for the catalysed reaction, we investigated the influence of substituents on the rate of this process in micellar solution and compared this influence to the correspondirg effect in different aqueous and organic solvents. Plots of the logarithms of the rate constants versus the Hammett -value show good linear dependences for all... [Pg.144]

Sigmatropic rearrangements are normally classified as concerted processes with relatively nonpolar transition states. However, the Fischer cyclization involves rearrangement of a charged intermediate and ring substituents have a significant effect on the rate of the rearrangement. The overall cyclization rate... [Pg.54]

Adsorption is invariably an exothermic process, so that, provided equilibrium has been established, the amount adsorbed at a given relative pressure must diminish as the temperature increases. It not infrequently happens, however, that the isotherm at a given temperature Tj actually lies above the isotherm for a lower temperature Ti. Anomalous behaviour of this kind is characteristic of a system which is not in equilibrium, and represents the combined effects of temperature on the rate of approach to equilibrium and on the position of equilibrium itself. It points to a process which is activated in the reaction-kinetic sense and which therefore occurs more rapidly as temperature is increased. [Pg.228]

Kinetic methods of analysis are based on the rate at which a chemical or physical process involving the analyte occurs. Three types of kinetic methods are discussed in this chapter chemical kinetic methods, radiochemical methods, and flow injection analysis. [Pg.659]

The initiators which are used in addition polymerizations are sometimes called catalysts, although strictly speaking this is a misnomer. A true catalyst is recoverable at the end of the reaction, chemically unchanged. Tliis is not true of the initiator molecules in addition polymerizations. Monomer and polymer are the initial and final states of the polymerization process, and these govern the thermodynamics of the reaction the nature and concentration of the intermediates in the process, on the other hand, determine the rate. This makes initiator and catalyst synonyms for the same material The former term stresses the effect of the reagent on the intermediate, and the latter its effect on the rate. The term catalyst is particularly common in the language of ionic polymerizations, but this terminology should not obscure the importance of the initiation step in the overall polymerization mechanism. [Pg.349]

The assumption that k values are constant over the entire duration of the reaction breaks down for termination reactions in bulk polymerizations. Here, as in Sec. 5.2, we can consider the termination process—whether by combination or disproportionation to depend on the rates at which polymer molecules can diffuse into (characterized by kj) or out of (characterized by k ) the same solvent cage and the rate at which chemical reaction between them (characterized by kj.) occurs in that cage. In Chap. 5 we saw that two limiting cases of Eq. (5.8) could be readily identified ... [Pg.361]

Another aspect of plasticity is the time dependent progressive deformation under constant load, known as creep. This process occurs when a fiber is loaded above the yield value and continues over several logarithmic decades of time. The extension under fixed load, or creep, is analogous to the relaxation of stress under fixed extension. Stress relaxation is the process whereby the stress that is generated as a result of a deformation is dissipated as a function of time. Both of these time dependent processes are reflections of plastic flow resulting from various molecular motions in the fiber. As a direct consequence of creep and stress relaxation, the shape of a stress—strain curve is in many cases strongly dependent on the rate of deformation, as is illustrated in Figure 6. [Pg.271]

Properties. The crystallinity of FEP polymer is significantly lower than that of PTFE (70 vs 98%). The stmcture resembles that of PTFE, except for a random replacement of a fluorine atom by a perfluoromethyl group (CF ). The crystallinity after processing depends on the rate of cooling the molten polymer. The presence of HFP ia the polymer chain teads to distort the highly crystallized stmcture of the PTFE chaia and results ia a higher amorphous fractioa. [Pg.359]

Because of their very low boiling points, helium, neon, and hydrogen are noncondensable under the conditions at the top of the nitrogen column, and they concentrate in the nitrogen gas there. Because they cut down on the rate of condensation of nitrogen and thereby reduce the thermal efficiency of the process, they must be withdrawn. The noncondensable stream withdrawn may have a neon, helium, or hydrogen content that varies from 1 to 12%... [Pg.10]

This is essentially a corrosion reaction involving anodic metal dissolution where the conjugate reaction is the hydrogen (qv) evolution process. Hence, the rate depends on temperature, concentration of acid, inhibiting agents, nature of the surface oxide film, etc. Unless the metal chloride is insoluble in aqueous solution eg, Ag or Hg ", the reaction products are removed from the metal or alloy surface by dissolution. The extent of removal is controUed by the local hydrodynamic conditions. [Pg.444]


See other pages where Processing on the rate is mentioned: [Pg.16]    [Pg.392]    [Pg.16]    [Pg.392]    [Pg.854]    [Pg.928]    [Pg.75]    [Pg.75]    [Pg.136]    [Pg.162]    [Pg.167]    [Pg.12]    [Pg.245]    [Pg.290]    [Pg.338]    [Pg.382]    [Pg.457]    [Pg.259]    [Pg.5]    [Pg.95]    [Pg.555]    [Pg.395]    [Pg.70]    [Pg.233]    [Pg.267]    [Pg.123]   


SEARCH



Processing rate

Rate processes

© 2024 chempedia.info