Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process/reactor design containment

In this pyrolysis, sub atmospheric partial pressures are achieved by employing a diluent such as steam. Because of the corrosive nature of the acids (HE and HCl) formed, the reactor design should include a platinum-lined tubular reactor made of nickel to allow atmospheric pressure reactions to be mn in the presence of a diluent. Because the pyrolysate contains numerous by-products that adversely affect polymerization, the TFE must be purified. Refinement of TFE is an extremely complex process, which contributes to the high cost of the monomer. Inhibitors are added to the purified monomer to avoid polymerization during storage terpenes such as t7-limonene and terpene B are effective (10). [Pg.348]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

The ammonolysis of phenol (61—65) is a commercial process in Japan. Aristech Chemical Corporation (formerly USS Chemical Division of USX Corporation) currently operates a plant at Ha verb ill, Ohio to convert phenol to aniline. The plant s design is based on Halcon s process (66). In this process, phenol is vapori2ed, mixed with fresh and recycled ammonia, and fed to a reactor that contains a proprietary Lewis acid catalyst. The gas leaving the reactor is fed to a distillation column to recover ammonia overhead for recycle. Aniline, water, phenol, and a small quantity of by-product dipbenylamines are recovered from the bottom of the column and sent to the drying column, where water is removed. [Pg.231]

Besides improvements in catalyst characteristics [28], the low productivity of a photocatalytic process can also be improved by reactor design. In photocatalytic research on a laboratory scale, the most widely applied reactors are the top illumination or annular reactors containing a suspended catalyst [29]. This type of... [Pg.292]

This chapter contains a discussion of two intermediate level problems in chemical reactor design that indicate how the principles developed in previous chapters are applied in making preliminary design calculations for industrial scale units. The problems considered are the thermal cracking of propane in a tubular reactor and the production of phthalic anhydride in a fixed bed catalytic reactor. Space limitations preclude detailed case studies of these problems. In such studies one would systematically vary all relevant process parameters to arrive at an optimum reactor design. However, sufficient detail is provided within the illustrative problems to indicate the basic principles involved and to make it easy to extend the analysis to studies of other process variables. The conditions employed in these problems are not necessarily those used in current industrial practice, since the data are based on literature values that date back some years. [Pg.540]

While exhaust gas cleanup of non-combustion thermochemical conversion processes may be easier than that associated with direct combustion, proper design of the process and emissions control systems is necessary to ensure that health and safety requirements are met. The output products of pyrolysis and gasification reactors can contain a variety of potential process and air pollutants that must be controlled prior to discharge into the ambient air. These include particulate matter... [Pg.263]

In a number of important industrial processes, it is necessary to carry out a reaction between a gas and a liquid. Usually the object is to make a particular product, for example, a chlorinated hydrocarbon such as chlorobenzene by the re action of gaseous chlorine with liquid benzene. Sometimes the liquid is simply the reaction medium, perhaps containing a catalyst, and all the reactants and products are gaseous. In other cases the main aim is to separate a constituent such as C02 from a gas mixture although pure water could be used to remove CO2, a solution of caustic soda, potassium carbonate or ethanolamine has the advantages of increasing both the absorption capacity of the liquid and the rate of absorption. The subject of gas-liquid reactor design thus really includes absorption with chemical reaction which is discussed in Volume 2, Chapter 12. [Pg.196]

The downflow fixed-bed reactor has been used widely for hydrodesulfurization processes and is so called because of the feedstock entry at the top of the reactor while the product stream is discharged from the base of the reactor (Figure 5-6). The catalyst is contained in the reactor as stationary beds with the feedstock and hydrogen passing through the bed in a downward direction. The exothermic nature of the reaction and the subsequent marked temperature rise from the inlet to the outlet of each catalyst bed require that the reaction mix be quenched by cold recycle gas at various points in the reactor. Hence the incorporation of separate catalyst beds as part of the reactor design. [Pg.192]

MRH process a hydrocracking process to upgrade heavy feedstocks containing large amounts of metals and asphaltene, such as vacuum residua and bitumen, and to produce mainly middle distillates using a reactor designed to maintain a mixed three-phase slurry of feedstock, fine powder catalyst and hydrogen, and to promote effective contact. [Pg.444]

Since the reactor feed may contain inert species (e.g., nitrogen and solvents) and since there may be unconverted feed and by-products in the reactor effluent, a number of unit operations (distillation, filtration, etc.) may be required to produce the desired product(s). In practice, the flow of mass and energy through the process is captured by a process flow sheet. The flow sheet may require recycle (of unconverted feed, solvents, etc.) and purging that may affect reaction chemistry. Reactor design and operation influence the process and vice versa. [Pg.4]


See other pages where Process/reactor design containment is mentioned: [Pg.37]    [Pg.151]    [Pg.249]    [Pg.22]    [Pg.499]    [Pg.245]    [Pg.79]    [Pg.33]    [Pg.156]    [Pg.445]    [Pg.28]    [Pg.218]    [Pg.194]    [Pg.279]    [Pg.401]    [Pg.133]    [Pg.495]    [Pg.538]    [Pg.110]    [Pg.226]    [Pg.256]    [Pg.281]    [Pg.241]    [Pg.195]    [Pg.32]    [Pg.341]    [Pg.79]    [Pg.137]    [Pg.22]    [Pg.494]    [Pg.215]    [Pg.236]    [Pg.310]    [Pg.76]    [Pg.4]    [Pg.7]    [Pg.530]    [Pg.202]    [Pg.1519]    [Pg.256]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Container design

Process Reactors

Process reactor designs

© 2024 chempedia.info