Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process development Reaction monitoring

It is particularly important to study process phenomena under dynamic (rather than static) conditions. Most current analytical techniques are designed to determine the initial and final states of a material or process. Instmments must be designed for the analysis of materials processing in real time, so that the cmcial chemical reactions in materials synthesis and processing can be monitored as they occur. Recent advances in nuclear magnetic resonance and laser probes indicate valuable lines of development for new techniques and comparable instmmentation for the study of interfaces, complex hquids, microstmctures, and hierarchical assemblies of materials. Instmmentation needs for the study of microstmctured materials are discussed in Chapter 9. [Pg.88]

HPLC is a very powerful technique for qualitative and quantitative analysis. In the support of process development, HPLC plays an important role in monitoring a reaction, since each reaction component can be quantitated. In this role, the HPLC method must be fast, rugged, and specific, capable of separating all reactants, products, and byproducts. Development of appropriate analytical methods is often a rate-limiting step in process development. [Pg.174]

For the development of the LANA route, analytical techniques such as GC, TLC, FIPLC, NMR, and GC/MS were used. GC methods were developed to monitor formation of the Grignard reagent. Since all of the components of the LANA route are unstable to the elevated temperatures of GC, FIPLC and TLC techniques were chosen for qualitative and quantitative analysis of reaction samples, to monitor reaction progress, and to determine the purity of intermediates and final product. Because the process development time was limited and the LANA process was entirely dependent on HPLC analysis, we set criteria for the development of HPLC methods ... [Pg.180]

Applications In contrast to El ionisation, ion-molecule reactions in IMR-MS usually avoid fragmentation [71]. This allows on-line multicomponent analysis of complex gas mixtures (exhaust gases, heterogeneous catalysis, indoor environmental monitoring, product development and quality control, process and emissions monitoring) [70], It should easily be possible to extend the application of the technique to the detection of volatiles in polymer/additive analysis. [Pg.367]

In addition to the challenges cited above, there are some special issues associated with steroid chemistry that should be noted. The steroidal impurities formed in the process are generally similar in structure to the desired product and, in some cases, co-crystallization with the product is a problem. It is, therefore, critical to limit the formation of steroidal impurities in the reactions. The structural similarity between product and impurities also creates challenges in developing assays for reaction monitoring and purity determination. Furthermore, the poor solubility of these compounds in the solvents typically used in a manufacturing process makes it very difficult to achieve practical volume productivity in process development. [Pg.80]

In Section 8.2, the aim of analysis is emphasized especially for the API (active pharmaceutical ingredient) and the drug product. The workflows and the rationale at major decision points during synthetic processing steps where HPLC can be applied in process development are elaborated upon. For example, a fast method is needed to monitor reaction conversion of two components. However, a more complex method would be needed for stability-indicating purposes where multiple degradation products, synthetic by-products, and excipient peaks need to be resolved from the active pharmaceutical ingredient. [Pg.348]

Temperature is a key variable in most analytical processes. In microwave-assisted processes, it plays a prominent role and affects the rate of some reactions, the degradation of thermolabile species and the solubilization of some substances, among others. A number of devices have been developed for monitoring or even controlling the temperature, some of which are commented on in Section 5.3. [Pg.208]

Areas of application of reaction calorimetry include determination of calorimetric data for reactions and process design, for the kinetic characterization of chemical reactions and of physical changes, for on-line monitoring of heat release and other analytical parameters needed in subsequent process development as well as for the development and optimization of chemical processes with the objective, for instance, to increase yield or profitability, control the morphology or degree of polymerization and/or index of polydispersity, etc. [Pg.88]

However, there is a remarkable disproportion between the three main areas occupied today by RC, namely hazards, process design/optimization and for monitoring the physico-chemical transformations. If there is an extensive activity in the field of hazards, often with little contribution to increased safety, probably less than 20% of the process development laboratories use calorimeters for process design and optimization very little interest is shown for the use of heat released as a tracer for physico-chemical transformations since RC is still barely used in synthesis laboratories where reactions and process procedures are initiated. [Pg.88]

The use of modem analytical methods has led to the determination of the PAHs which are produced in catalytic hydrocrackers. A variety of HPLC-DAD, fluorescence, and UV absorbance methods were developed to determine the occurrence of the PAHs. These PAHs result from a small number of reactions. These are either a new ring forming through two-or four-carbon addition or the condensation of pyrene, coronene, or ovalene. The latter reactions result in very large PAHs which cause process problems because of their low solubilities. Their production rates (and eventual precipitation in the process streams) can be monitored through the use of UV absorbance and fluorescence spectrometries. A synchronous-scanning fluorescence method was developed to monitor the production of dicoronylene during process operation. The results of these analyses can then be used to determine process performance. [Pg.271]


See other pages where Process development Reaction monitoring is mentioned: [Pg.232]    [Pg.160]    [Pg.728]    [Pg.445]    [Pg.562]    [Pg.173]    [Pg.81]    [Pg.175]    [Pg.670]    [Pg.95]    [Pg.142]    [Pg.259]    [Pg.82]    [Pg.168]    [Pg.224]    [Pg.224]    [Pg.330]    [Pg.442]    [Pg.534]    [Pg.258]    [Pg.262]    [Pg.154]    [Pg.124]    [Pg.158]    [Pg.337]    [Pg.147]    [Pg.534]    [Pg.178]    [Pg.150]    [Pg.14]    [Pg.282]    [Pg.319]    [Pg.352]    [Pg.1810]    [Pg.173]    [Pg.124]    [Pg.338]    [Pg.292]    [Pg.75]    [Pg.225]    [Pg.191]   


SEARCH



Monitor reaction

Reaction monitoring

© 2024 chempedia.info