Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process development in the fine

The rest of this chapter is a discussion of selected examples of equipment used to study the kinetics of multiphase reactions. We begin with instrumentation suitable for industrial process development in the fine chemicals area and then move on to more sophisticated methods which can be used to extract true surface kinetics data even in the presence of sharp concentration gradients near the surface. [Pg.113]

Distillation is a well-known process and scale-up methods have been well established. Many computer programs for the simulation of continuous distillation columns that are operated at steady state are available. In fine chemicals manufacture, this concerns separations of products in the production of bulk fine chemicals and for solvent recovery/purification. In the past decade, software for modelling of distillation columns operated at non-steady state, including batch distillation, has been developed. In the fine chemicals business, usually batch distillation is applied. [Pg.256]

Product innovation absorbs considerable resources in the fine chemicals industry, in part because of the shorter life cycles of fine chemicals as compared to commodities. Consequently, research and development (R D) plays an important role. The main task of R D in fine chemicals is scaling-up lab processes, as described, eg, in the ORAC data bank or as provided by the customers, so that the processes can be transferred to pilot plants (see Pilot PLANTS AND microplants) and subsequently to industrial-scale production. Thus the R D department of a fine chemicals manufacturer typically is divided into a laboratory or process research section and a development section, the latter absorbing the Hon s share of the R D budget, which typically accounts for 5 to 10% of sales. Support functions include the analytical services, engineering, maintenance, and Hbrary. [Pg.436]

The yield of hydroquinone is 85 to 90% based on aniline. The process is mainly a batch process where significant amounts of soHds must be handled (manganese dioxide as well as metal iron finely divided). However, the principal drawback of this process resides in the massive coproduction of mineral products such as manganese sulfate, ammonium sulfate, or iron oxides which are environmentally not friendly. Even though purified manganese sulfate is used in the agricultural field, few solutions have been developed to dispose of this unsuitable coproduct. Such methods include MnSO reoxidation to MnO (1), or MnSO electrochemical reduction to metal manganese (2). None of these methods has found appHcations on an industrial scale. In addition, since 1980, few innovative studies have been pubUshed on this process (3). [Pg.487]

Alkyl chlorides. Olefins are chlorinated to alkyl chlorides in a single fluidized bed. HCl reacts with O9 over a copper chloride catalyst to form chlorine. The chlorine reacts with the olefin to form the alkyl chloride. The process developed by the Shell Development Co. uses a recycle of cat yst fines in aqueous HCl to control the temperature [Chem. Proc., 16, 42 (1953)]. [Pg.1573]

The flotation process was developed in the mining and coal processing industries as a way of separating suspended solids from a medium such as water. As noted above, the flotation process has found uses in other fields, such as wastewater treatment. The process introduces fine air bubbles into the mixture, so that the air bubbles attach to the particles, and lift them to the surface. [Pg.318]

The implications of the features of fine chemicals manufacture mentioned above, are, however, not that obvious to all parties taking part in process development. On the one hand, chemical and process engineers are dedicated mainly to the engineering part in process development, often neglecting process chemistry, as this might be erroneously considered less important for a full-scale plant. On the other hand, synthetic chemists often finish their work with laboratory recipes neglecting needs of procedures for process development. The reasons for this approach have been listed by Laird (1989) ... [Pg.6]

The traditional use of dyes is in the coloration of textiles, a topic covered in considerable depth in Chapters 7 and 8. Dyes are almost invariably applied to the textile materials from an aqueous medium, so that they are generally required to dissolve in water. Frequently, as is the case for example with acid dyes, direct dyes, cationic dyes and reactive dyes, they dissolve completely and very readily in water. This is not true, however, of every application class of textile dye. Disperse dyes for polyester fibres, for example, are only sparingly soluble in water and are applied as a fine aqueous dispersion. Vat dyes, an important application class of dyes for cellulosic fibres, are completely insoluble materials but they are converted by a chemical reduction process into a water-soluble form that may then be applied to the fibre. There is also a wide range of non-textile applications of dyes, many of which have emerged in recent years as a result of developments in the electronic and reprographic... [Pg.23]

Phillips (1) A process for polymerizing ethylene and other linear olefins and di-olefins to make linear polymers. This is a liquid-phase process, operated in a hydrocarbon solvent at an intermediate pressure, using a heterogeneous oxide catalyst such as chromia on silica/ alumina. Developed in the 1950s by the Phillips Petroleum Company, Bartlesville, OK, and first commercialized at its plant in Pasadena, TX. In 1991, 77 reaction fines were either operating or under construction worldwide, accounting for 34 percent of worldwide capacity for linear polyethylene. [Pg.209]


See other pages where Process development in the fine is mentioned: [Pg.119]    [Pg.147]    [Pg.604]    [Pg.119]    [Pg.147]    [Pg.604]    [Pg.6]    [Pg.900]    [Pg.358]    [Pg.83]    [Pg.51]    [Pg.329]    [Pg.207]    [Pg.406]    [Pg.255]    [Pg.1882]    [Pg.447]    [Pg.373]    [Pg.304]    [Pg.1]    [Pg.76]    [Pg.190]    [Pg.195]    [Pg.197]    [Pg.204]    [Pg.235]    [Pg.29]    [Pg.194]    [Pg.328]    [Pg.426]    [Pg.428]    [Pg.112]    [Pg.108]    [Pg.638]    [Pg.740]    [Pg.147]    [Pg.585]    [Pg.468]    [Pg.60]    [Pg.253]    [Pg.291]    [Pg.450]   


SEARCH



Fining process

© 2024 chempedia.info