Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure drop monolith

Monolith multiphase chemical reactors are another example of microfluidic multiphase flow applications. The slug flow pattern enhances the mass transfer in the liquid-solid process. There is also low-pressure drop for a given specific contact area. Machado et al (1999) have patented the use of monolith reactors for fast and highly exothermic nitroaromatic hydrogenation. In this process, the product is recycled through the reactors several hundreds of times, and the low-pressure-drop monolith reactor is therefore preferred. [Pg.193]

Automobile exhaust catalysts have been developed that maximize the catalyst surface area available to the flowing exhaust gas without incurring excessive pressure drop. Two types have been extensively studied the monolithic honeycomb type and the pellet type. [Pg.484]

Use of the peUetted converter, developed and used by General Motors starting in 1975, has declined since 1980. The advantage of the peUetted converter, which consists of a packed bed of small spherical beads about 3 mm in diameter, is that the pellets were less cosdy to manufacture than the monolithic honeycomb. Disadvantages were the peUetted converter had 2 to 3 times more weight and volume, took longer to heat up, and was more susceptible to attrition and loss of catalyst in use. The monolithic honeycomb can be mounted in any orientation, whereas the peUetted converter had to be downflow. AdditionaUy, the pressure drop of the monolithic honeycomb is one-half to one-quarter that of a similar function peUetted converter. [Pg.484]

Fig. 23. Pressure drop through a large monolith as a function of He flow rate [27]. Fig. 23. Pressure drop through a large monolith as a function of He flow rate [27].
An alternate form of catalyst is pellets. The pellets are available in various diameters or extruded forms. The pellets can have an aluminum oxide coating with a noble metal deposited as the catalyst. The beads are placed in a tray or bed and have a depth of anywhere from 6 to 10 inches. The larger the bead (1/4 inch versus 1/8 inch) the less the pressure drop through the catalyst bed. However, the larger the bead, the less surface area is present in the same volume which translates to less destruction efficiency. Higher pressure drop translates into higher horsepower required for the oxidation system. The noble metal monoliths have a relatively low pressure drop and are typically more expensive than the pellets for the same application. [Pg.480]

Another important constraint comes from the pressure drop across the catalytic bed, which must be kept to a minimum to avoid a loss in engine power and performance. This requirement is satisfied by a very shallow pellet bed of no more than ten pellets deep, a monolithic structure with many open parallel channels, or a pile of metallic screens and saddles. [Pg.75]

The three principal catalyst bed configurations are the pellet bed, the monolith, and the metallic wire meshes. An open structure with large openings is needed to fulfill the requirement of a low pressure drop even at the very high space velocities of 200,000 hr-1. On the other hand, packings with small diameters would provide more external surface area to fulfill the requirement for rapid mass transfer from the g .s stream to the solid surface. The compromise between these two ideals results in a rather narrow range of dimensions pellets are from to 1 in. in diameter, monoliths have 6 to 20 channels/in., and metallic meshes have diameters of about 0.004 to 0.03 in. [Pg.82]

A pellet bed must be shallow to avoid a high pressure drop. Most designs have a depth of 1 to 2 in., representing 5 to 15 layers of pellets. This shallow bed differs considerably from industrial practices in petroleum and chemical plants where a depth of several hundred layers is the rule. The more open monolith and metallic screens offer a lower pressure drop per inch, so that a bed 6 in. deep is still acceptable. Two pellet beds in series would create very high pressure drops. [Pg.84]

Provided that the catalyst is active enough, there will be sufficient conversion of the pollutant gases through the pellet bed and the screen bed. The Sherwood number of CO is almost equal to the Nusselt number, and 2.6% of the inlet CO will not be converted in the monolith. The diffusion coefficient of benzene is somewhat smaller, and 10% of the inlet benzene is not converted in the monolith, no matter how active is the catalyst. This mass transfer limitation can be easily avoided by forcing the streams to change flow direction at the cost of some increased pressure drop. These calculations are comparable with the data in Fig. 22, taken from Carlson 112). [Pg.104]

Control of emissions of CO, VOC, and NOj, is high on the agenda. Heterogeneous catalysis plays a key role and in most cases structured reactors, in particular monoliths, outperform packed beds because of (i) low pressure drop, (ii) flexibility in design for fast reactions, that is, thin catalytic layers with large geometric surface area are optimal, and (iii) attrition resistance [17]. For power plants the large flow... [Pg.191]

The consideration of the pressure drop over the monoliths containing a variety of CPSI (cells per in ) for the modeling of honeycomb reactor may be required, since Ap of the reactor strongly depends on CPSI of monolith. Eqn. (7) for the pressure drop of the honeycomb was employed to develop the reactor model describing the performance of the honeycomb fabricated in the present work [8]. and Ke indicate contraction and expansion loss coefficient at the honeycomb inlet and outlet, respectively and o is the ratio of free flow area to frontal area. [Pg.447]

As with the automotive exhaust converter, the SCR catalyst is designed to handle large flows of gas (e.g. 300 N s for a 300 MW power plant) without causing a significant pressure drop. Figure 10.12 shows a reactor arrangement with about 250 m of catalyst in monolithic form, sufficient for a 300 MW power plant. [Pg.395]

Reactors with a packed bed of catalyst are identical to those for gas-liquid reactions filled with inert packing. Trickle-bed reactors are probably the most commonly used reactors with a fixed bed of catalyst. A draft-tube reactor (loop reactor) can contain a catalytic packing (see Fig. 5.4-9) inside the central tube. Stmctured catalysts similar to structural packings in distillation and absorption columns or in static mixers, which are characterized by a low pressure drop, can also be inserted into the draft tube. Recently, a monolithic reactor (Fig. 5.4-11) has been developed, which is an alternative to the trickle-bed reactor. The monolith catalyst has the shape of a block with straight narrow channels on the walls of which catalytic species are deposited. The already extremely low pressure drop by friction is compensated by gravity forces. Consequently, the pressure in the gas phase is constant over the whole height of the reactor. If needed, the gas can be recirculated internally without the necessity of using an external pump. [Pg.266]

Structured catalysts, including monoliths, are very promising as far as pressure drop and high performance for selective reactions are concerned. The perspectives for the use of monolithic catalysts in heterogeneous catalysis have been analysed by Cybulski and Moulijn (1994) and are further discus.sed in Section 5.4.7.7. [Pg.388]

Two ways to reduce the diffusion length in TBRs are 1) use of smaller catalyst particles, or 2) use of an egg-shell catalyst. The first remedy, however, will increase pressure drop until it becomes unacceptable, and the second reduces the catalyst load in the reaction zone, making the loads of the TBR and the MR comparable. For instance, the volumetric catalyst load for a bed of 1 mm spherical particles with a 0.1 mm thick layer of active material is 0.27. The corresponding load for a monolithic catalyst made from a commercial cordierite structure (square cells, 400 cpsi, wall thickness 0.15 mm), also with a 0.1 mm thick layer of active material, is 0.25. [Pg.391]

Several uncertainties in this periodic process have not been resolved. Pressure drop is too high at SV = 10,000 h 1 when packed beds of carbon are used. Study of carbon-coated structured packing or of monoliths with activated carbon washcoats is needed to see if lower pressure drops at 95% SO2 removal can be achieved. Stack gas from coal or heavy oil combustion contains parts-per-million or -per-billion quantities of toxic elements and compounds. Their removal in the periodically operated trickle bed must be examined, as well as the effect of these elements on acid quality. So far, laboratory experiments have been done to just 80°C use of acid for flushing the carbon bed should permit operation at temperatures up to 150°C. Performance of periodic flow interruption at such temperatures needs to be determined. The heat exchange requirements for the RTI-Waterloo process shown in Fig. 26 depend on the temperature of S02 scrubbing. If operation at 150°C is possible, gas leaving the trickle bed can be passed directly to the deNO, step without reheating. [Pg.273]

Correlation was found between domain size and attainable column efficiency. Column efficiency increases with the decrease in domain size, just like the efficiency of a particle-packed column is determined by particle size. Chromolith columns having ca. 2 pm through-pores and ca. 1pm skeletons show H= 10 (N= 10,000 for 10 cm column) at around optimum linear velocity of 1 mm/s, whereas a 15-cm column packed with 5 pm particles commonly shows 10,GOO-15,000 theoretical plates (7 = 10—15) (Ikegami et al., 2004). The pressure drop of a Chromolith column is typically half of the column packed with 5 pm particles. The performance of a Chromolith column was described to be similar to 7-15 pm particles in terms of pressure drop and to 3.5 1 pm particles in terms of column efficiency (Leinweber and Tallarek, 2003 Miyabe et al., 2003). Figure 7.4 shows the pressure drop and column efficiency of monolithic silica columns. A short column produces 500 (1cm column) to 2500 plates (5 cm) at high linear velocity of 10 mm/s. Small columns, especially capillary type, are sensitive to extra-column band... [Pg.156]

Current commercial silica-based columns have two important characteristics (1) they can produce efficiency similar to that of columns packed with 3.5 /tm particles and (2) they typically produce a pressure drop of half that caused by a column packed with 5 /tm particles.35 Monolithic columns have been shown to exhibit flat van Deemter curves, resulting in little loss of efficiency at high flow rates.36 As a result, high-throughput separations on conventional HPLC instruments can be achieved by increasing flow rate up to nine times (up to 9 ml/min) the usual rate in a conventional packed column. Cycle times for HPLC analysis as short as 1 min (injection-to-injection) have been reported by users of monolithic columns. Additional benefits of monolithic columns cited include... [Pg.257]

Inclusion of photocatalysts in monolithic structures, namely solid structures with bored parallel channels, enables the pressure drop caused by the passage of the gas through the catalyst to be reduced by several orders of magnitude and improves both chemical and photon contact surfaces... [Pg.443]


See other pages where Pressure drop monolith is mentioned: [Pg.157]    [Pg.283]    [Pg.157]    [Pg.283]    [Pg.484]    [Pg.486]    [Pg.200]    [Pg.83]    [Pg.98]    [Pg.98]    [Pg.102]    [Pg.350]    [Pg.351]    [Pg.196]    [Pg.229]    [Pg.479]    [Pg.479]    [Pg.68]    [Pg.389]    [Pg.393]    [Pg.394]    [Pg.396]    [Pg.397]    [Pg.12]    [Pg.271]    [Pg.155]    [Pg.157]    [Pg.9]    [Pg.221]    [Pg.325]    [Pg.346]   
See also in sourсe #XX -- [ Pg.62 , Pg.160 , Pg.190 ]




SEARCH



© 2024 chempedia.info