Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure, 406 chemical equilibrium

Vapor-phase fugacity coefficients are needed not only in high-pressure phase equilibria, but are also of interest in high-pressure chemical equilibria (D6, K7, S4). The equilibrium yield of a chemical reaction can sometimes be strongly influenced by vapor-phase nonideality, especially if reactants and products have small concentrations due to the presence in excess of a suitably chosen nonreactive gaseous solvent (S4). [Pg.154]

Partial-pressure chemical equilibrium ratio (units depend on reaction stoichiometry)... [Pg.703]

At constant temperature and pressure, chemical equilibrium is reached when the Gibbs energy shows a minimum. To describe the change of the Gibbs energy with temperature, pressure, and composition, the following fundamental equation can be applied ... [Pg.531]

A tabulation of the partial pressures of sulfuric acid, water, and sulfur trioxide for sulfuric acid solutions can be found in Reference 80 from data reported in Reference 81. Figure 13 is a plot of total vapor pressure for 0—100% H2SO4 vs temperature. References 81 and 82 present thermodynamic modeling studies for vapor-phase chemical equilibrium and liquid-phase enthalpy concentration behavior for the sulfuric acid—water system. Vapor pressure, enthalpy, and dew poiat data are iacluded. An excellent study of vapor—liquid equilibrium data are available (79). [Pg.180]

Some chemical reactions are reversible and, no matter how fast a reaction takes place, it cannot proceed beyond the point of chemical equilibrium in the reaction mixture at the specified temperature and pressure. Thus, for any given conditions, the principle of chemical equilibrium expressed as the equilibrium constant, K, determines how far the reaction can proceed if adequate time is allowed for equilibrium to be attained. Alternatively, the principle of chemical kinetics determines at what rate the reaction will proceed towards attaining the maximum. If the equilibrium constant K is very large, for all practical purposes the reaction is irreversible. In the case where a reaction is irreversible, it is unnecessary to calculate the equilibrium constant and check the position of equilibrium when high conversions are needed. [Pg.59]

Kotas [3] has drawn a distinction between the environmental state, called the dead state by Haywood [1], in which reactants and products (each at po. To) are in restricted thermal and mechanical equilibrium with the environment and the truly or completely dead state , in which they are also in chemical equilibrium, with partial pressures (/)j) the same as those of the atmosphere. Kotas defines the chemical exergy as the sum of the maximum work obtained from the reaction with components atpo. To, [—AGo], and work extraction and delivery terms. The delivery work term is Yk k kJo ln(fo/pt), where Pii is a partial pressure, and is positive. The extraction work is also Yk kRkTo n(po/Pk) but is negative. [Pg.22]

Ultrasonic absorption is a so-called stationary method in which a periodic forcing function is used. The forcing function in this case is a sound wave of known frequency. Such a wave propagating through a medium creates a periodically varying pressure difference. (It may also produce a periodic temperature difference.) Now suppose that the system contains a chemical equilibrium that can respond to pressure differences [as a consequence of Eq. (4-28)]. If the sound wave frequency is much lower than I/t, the characteristic frequency of the chemical relaxation (t is the... [Pg.144]

Several basic principles that engineers and scientists employ in performing design calculations and predicting Uie performance of plant equipment includes Uieniiochemistiy, chemical reaction equilibrimii, chemical kinetics, Uie ideal gas law, partial pressure, pliase equilibrium, and Uie Reynolds Number. [Pg.131]

It is found that after the elapse of a sufficient time interval, all reversible reactions reach a state of chemical equilibrium. In this state the composition of the equilibrium mixture remains constant, provided that the temperature (and for some gaseous reactions, the pressure also) remains constant. Furthermore, provided that the conditions (temperature and pressure) are maintained constant, the same state of equilibrium may be obtained from either direction of a given reversible reaction. In the equilibrium state, the two opposing reactions are taking place at the same rate so that the system is in a state of dynamic equilibrium. [Pg.15]

Carbon isotherms for a pressure of 30 psia are superimposed on the ternary (Figure 3). Interpretation of the isotherms reveals that mixtures of the elements which fall above the curves are in the carbon-forming region when at chemical equilibrium. Mixtures of the elements which... [Pg.151]

The mathematical properties of the set of equations describing chemical equilibrium in the synthesis gas system indicate that the carbon-producing regions are defined solely by pressure, temperature, and elemental analysis. Once a safe blend of reactants is determined from the ternary, the same set of equations which was used to derive the ternary may be used to determine the gas composition. [Pg.153]

The state of physical and chemical equilibrium of the system, at a constant temperature and pressure in all parts, may now be completely characterised by two sets of relations ... [Pg.410]

Chapters 7 to 9 apply the thermodynamic relationships to mixtures, to phase equilibria, and to chemical equilibrium. In Chapter 7, both nonelectrolyte and electrolyte solutions are described, including the properties of ideal mixtures. The Debye-Hiickel theory is developed and applied to the electrolyte solutions. Thermal properties and osmotic pressure are also described. In Chapter 8, the principles of phase equilibria of pure substances and of mixtures are presented. The phase rule, Clapeyron equation, and phase diagrams are used extensively in the description of representative systems. Chapter 9 uses thermodynamics to describe chemical equilibrium. The equilibrium constant and its relationship to pressure, temperature, and activity is developed, as are the basic equations that apply to electrochemical cells. Examples are given that demonstrate the use of thermodynamics in predicting equilibrium conditions and cell voltages. [Pg.686]

Chemical relaxation techniques were conceived and implemented by M. Eigen, who received the 1967 Nobel Prize in Chemistry for his work. In a relaxation measurement, one perturbs a previously established chemical equilibrium by a sudden change in a physical variable, such as temperature, pressure, or electric field strength. The experiment is carried out so that the time for the change to be applied is much shorter than that for the chemical reaction to shift to its new equilibrium position. That is to say, the alteration in the physical variable changes the equilibrium constant of the reaction. The concentrations then adjust to their values under the new condition of temperature, pressure, or electric field strength. [Pg.256]

Why Do We Need to Know This Material The second law of thermodynamics is the key to understanding why one chemical reaction has a natural tendency to occur bur another one does not. We apply the second law by using the very important concepts of entropy and Gibbs free energy. The third law of thermodynamics is the basis of the numerical values of these two quantities. The second and third laws jointly provide a way to predict the effects of changes in temperature and pressure on physical and chemical processes. They also lay the thermodynamic foundations for discussing chemical equilibrium, which the following chapters explore in detail. [Pg.386]

Why Do We Need to Know This Material The dynamic equilibrium toward which every chemical reaction tends is such an important aspect of the study of chemistry that four chapters of this book deal with it. We need to know the composition of a reaction mixture at equilibrium because it tells us how much product we can expect. To control the yield of a reaction, we need to understand the thermodynamic basis of equilibrium and how the position of equilibrium is affected by conditions such as temperature and pressure. The response of equilibria to changes in conditions has considerable economic and biological significance the regulation of chemical equilibrium affects the yields of products in industrial processes, and living cells struggle to avoid sinking into equilibrium. [Pg.477]

One difficulty Haber faced is that the reactions used to produce compounds from nitrogen do not go to completion, but appear to stop after only some of the reactants have been used up. At this point the mixture of reactants and products has reached chemical equilibrium, the stage in a chemical reaction when there is no further tendency for the composition of the reaction mixture—the concentrations or partial pressures of the reactants and products—to change. To achieve the greatest conversion of nitrogen into its compounds, Haber had to understand how a reaction approaches and eventually reaches equilibrium and then use that... [Pg.477]

When the simulation of deep-well temperatures, pressures, and salinities is imposed as a condition, the number of codes that may be of value is reduced to a much smaller number. Nordstrom and Ball121 recommend six references as covering virtually all the mathematical, thermodynamic, and computational aspects of chemical-equilibrium formulations (see references 123-128). Recent references on modeling include references 45, 63, 70, 129, and 130. [Pg.827]

Currently, systems for measuring the hydrogen content in molten aluminum are commercially available. In the most common systems, an inert gas (usually nitrogen) flows through a probe and over the molten metal, such that chemical equilibrium between the hydrogen partial pressure in the gas and the concentration of hydrogen in the... [Pg.514]

Detonation pressure and temperature of hydrogen-air mixtures starting from 101.3 kPa (1 atm) and 298 K (25°C). Chapman-Jouguet calculations using the Gordon-McBride code. (After Gordon, S. and McBride, B.J., Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, NASA Reference Publication, Cleveland, Ohio, 1994.)... [Pg.548]

The most fundamental manner of demonstrating the relationship between sorbed water vapor and a solid is the water sorption-desorption isotherm. The water sorption-desorption isotherm describes the relationship between the equilibrium amount of water vapor sorbed to a solid (usually expressed as amount per unit mass or per unit surface area of solid) and the thermodynamic quantity, water activity (aw), at constant temperature and pressure. At equilibrium the chemical potential of water sorbed to the solid must equal the chemical potential of water in the vapor phase. Water activity in the vapor phase is related to chemical potential by... [Pg.390]


See other pages where Pressure, 406 chemical equilibrium is mentioned: [Pg.723]    [Pg.115]    [Pg.728]    [Pg.44]    [Pg.243]    [Pg.682]    [Pg.1258]    [Pg.364]    [Pg.581]    [Pg.7]    [Pg.40]    [Pg.367]    [Pg.499]    [Pg.540]    [Pg.84]    [Pg.422]    [Pg.1158]    [Pg.579]    [Pg.276]    [Pg.248]    [Pg.369]    [Pg.141]    [Pg.106]    [Pg.285]    [Pg.23]    [Pg.443]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



Chemical equilibria, high pressure spectroscop

Chemical pressure

Equilibrium constant, high pressure chemical

Equilibrium constant, high pressure chemical effects

Equilibrium pressure

High-pressure chemical equilibrium

Pressure chemical equilibrium relationship

Pressure conditions chemical equilibria

The Effect of Pressure on Chemical Reaction Equilibrium

Thermodynamic equations chemical equilibria pressure effects

Viscosity chemical equilibria pressure effects

© 2024 chempedia.info