Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High-pressure chemical equilibrium

Vapor-phase fugacity coefficients are needed not only in high-pressure phase equilibria, but are also of interest in high-pressure chemical equilibria (D6, K7, S4). The equilibrium yield of a chemical reaction can sometimes be strongly influenced by vapor-phase nonideality, especially if reactants and products have small concentrations due to the presence in excess of a suitably chosen nonreactive gaseous solvent (S4). [Pg.154]

It should be evident from the examples in Chapters 10, 11, and 12 that the evaluation of species fugacities or partial molar Gibbs energies (or chemical potentials) is central to any phase equilibrium calculation. Two different fugacity descriptions have been used, equations of. state and activity coefficient models. Both have adjustable parameters. If the values of these adjustable parameters are known or can be estimated, the phase equilibrium state may be predicted. Equally important, however, is the observation that measured phase equilibria can be used to obtain these parameters. For example, in Sec. 10.2 we demonstrated how activity coefficients could be computed directly from P-T-x-y data and how activity coefficient models could be fit to such data. Similarly, in Sec. 10.3 we pointed out how fitting equation-of-state predictions to experimental high-pressure phase equilibrium data could be used to obtain a best-fit value of the binary interaction parameter.. /"... [Pg.702]

The spinodal curve and the critical points (including multiple critical points) only depend on few moments of the molar-mass distribution of the polydisperse system while the cloud-point curve the shadow curve and the coexistence curves are strongly influenced by the whole curvature of the distribution function. The methods used that include the real molar-mass distribution or an assumed analytical distribution replaced by several hundred discrete components have been reviewed by Kamide. In the 1980s continuous thermodynamics was applied, for example, by Ratzsch and Kehlen to calculate the phase equilibrium of a solution of polyethene in supercritical ethene as a function of pressures at T= 403.15 K. The Flory s model was used with an equation of state to describe the poly-dispersity of polyethene with a a Wesslau distribution. Ratzsch and Wohlfarth applied continuous thermodynamics to the high-pressure phase equilibrium of ethene [ethylene]-I-poly(but-3-enoic acid ethene) [poly(ethylene-co-vinylace-tate)] and to the corresponding quasiternary system including ethenyl ethanoate [vinylacetate]. In addition to Flory s equation of state Ratzsch and Wohlfarth also tested the Schotte model as a suitable means to describe the phase equilibrium neglecting the polydispersity with respect to chemical composition of the... [Pg.299]

Some chemical reactions are reversible and, no matter how fast a reaction takes place, it cannot proceed beyond the point of chemical equilibrium in the reaction mixture at the specified temperature and pressure. Thus, for any given conditions, the principle of chemical equilibrium expressed as the equilibrium constant, K, determines how far the reaction can proceed if adequate time is allowed for equilibrium to be attained. Alternatively, the principle of chemical kinetics determines at what rate the reaction will proceed towards attaining the maximum. If the equilibrium constant K is very large, for all practical purposes the reaction is irreversible. In the case where a reaction is irreversible, it is unnecessary to calculate the equilibrium constant and check the position of equilibrium when high conversions are needed. [Pg.59]

With a suitable equation of state, all the fugacities in each phase can be found from Eq. (6), and the equation of state itself is substituted into the equilibrium relations Eq. (67) and (68). For an A-component system, it is then necessary to solve simultaneously N + 2 equations of equilibrium. While this is a formidable calculation even for small values of N, modern computers have made such calculations a realistic possibility. The major difficulty of this procedure lies not in computational problems, but in our inability to write for mixtures a single equation of state which remains accurate over a density range that includes the liquid phase. As a result, phase-equilibrium calculations based exclusively on equations of state do not appear promising for high-pressure phase equilibria, except perhaps for certain restricted mixtures consisting of chemically similar components. [Pg.172]

Figure 3.6 shows the equilibrium characteristics for the C-02-H20 reaction system. To favor production of CO and H2 from coal, reactions 3.9 and 3.10 should be carried out at a comparatively low pressure and low temperature. However, during actual production, synthesis of chemicals usually occur at high pressures of CO and H2, and therefore, the gasifier should be operated at high pressure and high temperature to obtain high process efficiency. [Pg.109]

MG Gonikberg. Chemical Equilibrium and Reaction Rate under High Pressures. Moscow Khimiya, 1969 [in Russian]. [Pg.161]

Figure 7.5 Variation of equilibrium oxygen partial pressure (a) equilibrium between a metal, Ag, and its oxide, Ag20, generates a fixed partial pressure of oxygen irrespective of the amount of each compound present at a constant temperature (b) the partial pressure increases with temperature (c) a series of oxides will give a succession of constant partial pressures at a fixed temperature and (d) the Mn-O system. [Data from T. B. Reed, Free Energy of Formation of Binary Compounds An Atlas of Charts for High-Temperature Chemical Calculations, M.I.T. Press, Cambridge, MA, 1971.]... Figure 7.5 Variation of equilibrium oxygen partial pressure (a) equilibrium between a metal, Ag, and its oxide, Ag20, generates a fixed partial pressure of oxygen irrespective of the amount of each compound present at a constant temperature (b) the partial pressure increases with temperature (c) a series of oxides will give a succession of constant partial pressures at a fixed temperature and (d) the Mn-O system. [Data from T. B. Reed, Free Energy of Formation of Binary Compounds An Atlas of Charts for High-Temperature Chemical Calculations, M.I.T. Press, Cambridge, MA, 1971.]...
High-pressure experiments promise to provide insight into chemical reactivity under extreme conditions. For instance, chemical equilibrium analysis of shocked hydrocarbons predicts the formation of condensed carbon and molecular hydrogen.17 Similar mechanisms are at play when detonating energetic materials form condensed carbon.10 Diamond anvil cell experiments have been used to determine the equation of state of methanol under high pressures.18 We can then use a thermodynamic model to estimate the amount of methanol formed under detonation conditions.19... [Pg.162]

The exp-6 potential has also proved successful in modeling chemical equilibrium at the high pressures and temperatures characteristic of detonation. However, to calibrate the parameters for such models, it is necessary to have experimental data for product molecules and mixtures of molecular species at high temperature and pressure. Static compression and sound-speed measurements provide important data for these models. [Pg.165]

Thermodynamic equilibrium is found by balancing chemical potentials, where the chemical potentials of condensed species are functions of only pressure and temperature, whereas the potentials of gaseous species also depend on concentrations. To solve for the chemical potentials, it is necessary to know the pressure-volume relations for species that are important products in detonation. It is also necessary to know these relations at the high pressures and temperatures that typically characterize the C-J state. Thus, there is a need for improved high-pressure equations of state for fluids, particularly for molecular fluid mixtures. [Pg.165]

Because of the lack of high-pressure experimental reaction rate data for HMX and other explosives with which to compare, we produce in Figure 15 a comparison of dominant species formation for decomposing HMX that have been obtained from entirely different theoretical approaches. The concentration of species at chemical equilibrium can be estimated through thermodynamic calculations with the Cheetah thermochemical code.32,109... [Pg.182]

When very high pressures (> 1 GPa) are applied to liquid phases, glasses, or molecular crystals, mobility is reduced and steric effects become more important both in equilibrium and in kinetic aspects. Equations (9) and (14) are still valid, but equilibria and kinetics of chemical reactions must take into account the energetic, structural, and dynamic properties of the environment as well. [Pg.152]

In order to better understand the detailed dynamics of this system, an investigation of the unimolecular dissociation of the proton-bound methoxide dimer was undertaken. The data are readily obtained from high-pressure mass spectrometric determinations of the temperature dependence of the association equilibrium constant, coupled with measurements of the temperature dependence of the bimolecular rate constant for formation of the association adduct. These latter measurements have been shown previously to be an excellent method for elucidating the details of potential energy surfaces that have intermediate barriers near the energy of separated reactants. The interpretation of the bimolecular rate data in terms of reaction scheme (3) is most revealing. Application of the steady-state approximation to the chemically activated intermediate, [(CH30)2lT"], shows that. [Pg.48]


See other pages where High-pressure chemical equilibrium is mentioned: [Pg.728]    [Pg.728]    [Pg.184]    [Pg.34]    [Pg.401]    [Pg.2696]    [Pg.44]    [Pg.1248]    [Pg.2346]    [Pg.364]    [Pg.841]    [Pg.4]    [Pg.140]    [Pg.140]    [Pg.143]    [Pg.84]    [Pg.422]    [Pg.730]    [Pg.97]    [Pg.285]    [Pg.23]    [Pg.313]    [Pg.143]    [Pg.161]    [Pg.162]    [Pg.166]    [Pg.428]    [Pg.126]    [Pg.93]    [Pg.753]    [Pg.106]    [Pg.110]    [Pg.143]    [Pg.222]    [Pg.187]    [Pg.82]   
See also in sourсe #XX -- [ Pg.728 , Pg.729 , Pg.730 ]




SEARCH



Chemical high pressure

Chemical pressure

Equilibrium pressure

Pressure chemical equilibria

© 2024 chempedia.info