Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Precursor synthesis, anionic

A closely related series of sandwich complexes (also shown in Table 15) is formed with the anions derived from the Wells-Dawson structure, [X2Wi5056]12 (X = P, As), since these possess a lacunary surface identical to that of B-[PW9034]9-. Since the precursor lacunary anions are easily isolated, the synthesis of the sandwich complexes is straightforward. Although several Baker Figgis-type isomeric possibilities exist for anions of this composition,233 until recently all confirmed structures have been found to be identical. The exception is [(P2W15056)2FeIII2Na2(H20)2]16-, which has a different connectivity of the lacunary components.235... [Pg.653]

Campos-Fernandez, C.S. Clerac. R. Dunbar, K.R. A one-pot, high yield synthesis of a paramagnetic nickel square from divergent precursors by anion template assembly. Angew. Chem.. Int. Ed. 1999. 38 (23). 3469-3477. [Pg.57]

The 1,6-difunctional hydroxyketone given below contains an octyl chain at the keto group and two chiral centers at C-2 and C-3 (G. Magnusson, 1977). In the first step of the antithesis of this molecule it is best to disconnect the octyl chain and to transform the chiral residue into a cyclic synthon simultaneously. Since we know that ketones can be produced from add derivatives by alkylation (see p. 45ff,), an obvious precursor would be a seven-membered lactone ring, which is opened in synthesis by octyl anion at low temperature. The lactone in turn can be transformed into cis-2,3-dimethyicyclohexanone, which is available by FGI from (2,3-cis)-2,3-dimethylcyclohexanol. The latter can be separated from the commercial ds-trans mixture, e.g. by distillation or chromatography. [Pg.206]

Interest in the synthesis of 19-norsteroids as orally active progestins prompted efforts to remove the C19 angular methyl substituent of readily available steroid precursors. Industrial applications include the direct conversion of androsta-l,4-diene-3,17-dione [897-06-3] (92) to estrone [53-16-7] (26) by thermolysis in mineral oil at about 500°C (136), and reductive elimination of the angular methyl group of the 17-ketal of the dione [2398-63-2] (93) with lithium biphenyl radical anion to form the 17-ketal of estrone [900-83-4] (94) (137). [Pg.429]

Cyanohydrin trimethylsilyl ethers are generally useful as precursors of ctir-bonyl anion equivalents and as protected forms of aldehydes. Direct conversion of p-anisaldehyde into 0-TRIMETHYLSILYL-4-METH0XYMANDEL0-NITRILE employs a convenient in situ generation of trimethylsilyl cyanide from chlorotnmethylsilane A general synthesis of allemc esters is a variant of the Wittig reaction. Ethyl (triphenylphosphoranylidene)acetate converts pro-pionyl chloride into ETHYL 2,3-PENTADlENOATE. [Pg.226]

Anionic polymerizations are well suited for the synthesis of polymers fitted at chain end with reactive functions. Block copolymers can result from reactions between suitable functions carried by two different functional precursors. In some cases the carbanionic sites themselves are the reactive functions. In other cases, functional polymers (obtained anionically, or by other methods) can be reacted with low molecular weight coupling agents. Here are a few examples ... [Pg.166]

It is known that chlorine acts as severe poison for NH3 synthesis [20,21]. Hence recent kinetic studies used chlorine-free Ru precursors like Ru3(CO)i2 [8,22] or Ru(N0)(N03)3 [7]. In addition to chlorine, the presence of sulphur was found to poison Ru catalysts. Fig. 2A demonstrates that both poisons may originate from the Ru precursor. The binding energies for the Cl 2p peak and of the S 2p peak observed for Ru prepared form RUO3 are typical for chloride and sulfide anions, respectively [23]. Ru prepared from Rus(CO)i2 was found to have a significantly higher purity. As shown in fig. 2B, sulphur and chlorine impurities can also originate from the support. The XPS data of MgO with a purity of 98 % reveal the presence... [Pg.320]

Ethyl ethylthiomethyl sulphoxide anion 325 has been found to give better yield of 1,4-adducts compared with its methyl analogue . This anion has been used by Schlessinger and coworkers as a key reagent in the synthesis of 1,4-dicarbonyl precursors of naturally occurring cyclopentenones, e.g. dihydrojasmone 379 (equation 219). Michael addition of the anion of optically active (-l-)-(S)-p-tolyl p-tolylthiomethyl sulphoxide 380 to the properly substituted cyclopentenone constitutes an important step in the asymmetric synthesis of optically active cyclopentenone 381, which is a precursor of 11-deoxy-ent-prostanoids (equation 220). The reaction proceeds with a high and y-asymmetric induction (92%), but with a poor a-stereoselection (52 48). [Pg.321]

The story of the heavy analogs of 6jt-electron cyclopentadienyl anions has culminated in the latest synthesis of a compound containing three heavier group 14 elements (two Si and one Ge) in the ring. This aifionic species 69 Li+ was prepared by the reduction of the disilagermacyclopentadiene precursor 70 with potassium graphite KCg followed by the exchange of countercation from K+ to Li+ by treatment with LiBr (Scheme 2.66). ... [Pg.103]

By employing anionic techniques, alkyl methacrylate containing block copolymer systems have been synthesized with controlled compositions, predictable molecular weights and narrow molecular weight distributions. Subsequent hydrolysis of the ester functionality to the metal carboxylate or carboxylic acid can be achieved either by potassium superoxide or the acid catalyzed hydrolysis of t-butyl methacrylate blocks. The presence of acid and ion groups has a profound effect on the solution and bulk mechanical behavior of the derived systems. The synthesis and characterization of various substituted styrene and all-acrylic block copolymer precursors with alkyl methacrylates will be discussed. [Pg.258]

In 1989 we reported on the synthesis and structure of the first l,3-diphospha-2-sila-allylic anion 3a [4], mentioning its value as a precursor for phosphino-silaphosphenes. In analogy to 3a we obtained the anions 3b-f [5] by treatment of 4 equivalents of the lithium phosphide 1 with the adequately substituted RSiC, of which 3b and 3c were investigated by X-ray analyses. The very short P-Si bond lengths (2.11-2.13 A) of 3a-c and the almost planar arrangement of Pl-Sil-P2-Lil indicate the cr-character of the Lithium P-Si-P allyl complex. [Pg.143]

Construction of isolated or benzannulated five-membered rings of NHPs can be accomplished by means of various condensation or cycloaddition reactions all of which involve interaction of an electrophilic Pj and a nucleophilic C2N2 building block. Salts containing 1,3,2-diazaphospholide anions or 1,3,2-diazaphospholenium cations can be directly accessed by some of these reactions but the products are in most cases neutral 1,3,2-diazaphospholes or NHP. A particularly concerted effort has been directed toward the synthesis of P-halogen-substituted NHP which are capable of undergoing further reactions via halide displacement or halide abstraction and serve thus as entry points for the preparation of a wide variety of neutral and cationic NHP derivatives. 1,3,2-Diazaphospholide anions are normally accessed by deprotonation of suitable iV-H-substituted precursors. [Pg.67]

The synthesis of new heterocyclic derivatives under conservation of a preformed cyclic structure is not only of particular importance for the synthesis of ionic 1,3,2-diazaphosphole or NHP derivatives but has also been widely apphed to prepare neutral species with reactive functional substituents. The reactions in question can be formally classified as 1,2-addition or elimination reactions involving mutual interconversion between 1,3,2-diazaphospholes and NHP, and substitution processes. We will look at the latter in a rather general way and include, beside genuine group replacement processes, transformations that involve merely abstraction of a substituent and allow one to access cationic or anionic heterocycle derivatives from neutral precursors. [Pg.71]

Anionic polymerization techniques were also critical for the synthesis of a model cyclic triblock terpolymer [cyclic(S-fo-I-fr-MMA)] [196]. The linear cctw-amino acid precursor S-fr-I-fr-MMA was synthesized by the sequential anionic polymerization of St, I and MMA with 2,2,5,5-tetramethyl-l-(3-lithiopropyl)-l-aza-2,5-disilacyclopentane as the initiator and amine generator, and 4-bromo-l,l,l-trimethoxybutane as a terminator and carboxylic acid generator. Characterization studies of the intermediate materials as well as of the final cyclic terpolymer revealed high molecular and compositional homogeneity. Additional proof for the formation of the cyclic structure was provided by the lower intrinsic viscosity found for the cyclic terpolymer compared to that of the precursor. [Pg.122]

Y3Fe50i2 [7], These complexes have been obtained at 110-120°C, isolated, and studied in the crystalline form and in an aqueous solution. IR spectra suggest that these are monodentate coordinated to the metal ions. NMR data are in accord with an assumption that hydroxy and carboxylate groups attached to the central carbon atom of the citric acid anion are coordinated to the metal cations forming a stable five-membered ring. However, these important data are obtained at conditions that do not correspond to the conditions of the synthesis of precursors. [Pg.504]


See other pages where Precursor synthesis, anionic is mentioned: [Pg.1311]    [Pg.121]    [Pg.133]    [Pg.92]    [Pg.146]    [Pg.25]    [Pg.174]    [Pg.30]    [Pg.115]    [Pg.212]    [Pg.253]    [Pg.330]    [Pg.46]    [Pg.279]    [Pg.51]    [Pg.643]    [Pg.321]    [Pg.73]    [Pg.163]    [Pg.25]    [Pg.61]    [Pg.297]    [Pg.14]    [Pg.106]    [Pg.270]    [Pg.272]    [Pg.9]    [Pg.382]    [Pg.640]    [Pg.989]    [Pg.138]    [Pg.640]    [Pg.244]   


SEARCH



Precursor synthesis, anionic polymerization

Synthesis anionic

© 2024 chempedia.info