Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Precipitators batch precipitation reactors

The counterparts of dissolving particles are the processes of precipitation and crystallization the description and simulation of which involve several additional aspects however. First of all, the interest in commercial operations often relates to the average particle size and the particle size distribution at the completion of the (batch) operation. In precipitation reactors, particle sizes strongly depend on the (variations in the) local concentrations of the reactants, this dependence being quite complicated because of the nonlinear interactions of fluctuations in velocities, reactant concentrations, and temperature. [Pg.197]

An analytical solution to this integro-partial differential equation is not possible without some simplifying assumptions. In the sections that follow, anal5d ical solutions are presented for particle growth in a CSTR and batch precipitation reactors. For systems in which shear is the dominant collision mechanism and not Brownian difhision, the birth and death functions can be rewritten in terms of the mean shear rate, y, as follows [104]. [Pg.233]

Batch polymerization reactors are ideal to manufacture small volume polymers, specialty polymers, and polymers that are difficult to make in continuous reactors. Emulsion polymers, suspension polymers, and precipitation polymers are mostly made by batch polymerization processes. One of the disadvantages of a batch reactor is that the ratio of heat transfer surface area to reactor volume decreases as the reactor size is increased. For many polymer products made in batch reactors, the process economy improves with an increase in reactor size. Therefore, effective heat removal becomes a critical factor in designing and controlling a large-scale batch polymerization reactor. [Pg.2341]

The yttrium distribution for single batch size was extremely uniform as observed using SEM/EDXA. However, on scaleup from IX to 5X, large regions rich in yttria were observed. These regions were attributed to the mixing conditions in the precipitation reactor not scaling properly. Actions have been taken to address this problem and improvements are now evident. [Pg.40]

Wachi and Jones (1991b) used a gas-liquid flat interface reactor as a semi-batch precipitation cell for the experimental measurement of calcium carbonate precipitation, as shown in Figure 8.15. [Pg.239]

M Preparation of isopropyiidene peniciiiamine hydrochioride To the filtrate obtained In step (b) is added at 20°C to 25°C a total of 85 g of hydrogen sulfide. The precipitated HgS is filtered off and the filtrate is concentrated under reduced pressure to a volume of 200 to 500 ml. Following e polish filtration, the product-rich concentrate is mixed with 1.5 liters of isobutyl acetate. The mixture is refluxed at about 40 C under reduced pressure in equipment fitted with a water separation device. When no further water separates, the batch is cooled to 30t and filtered. The reactor is washed with 1 liter of acetone, which Is used also to wash the cake. The cake is further washed with 200 ml of acetone. The acetone washes are added to the isobutyl acetate filtrate and the mixture is refluxed for 20 to 30 minutes. After a holding period of one hour at 5°C, the crystals of isopropyiidene penicillamine hydrochloride are filtered and washed with 200 m of acetone. On drying for twelve hours at 25°C this product, containing 1 mol of water, weighs about 178 g (73%). [Pg.1173]

Both continuous and batch methods may be used in methanolysis. The batch mediod requires an autoclave, crystallizer, and centrifuge and a system for the melting and distillation of the DMT obtained. In the two-stage Hoechst continuous process, waste PET is melted and fed to a reactor. Preheated methanol is added to the autoclave, which is equipped with a mixer. The conversion reaches 70-90% in the first reactor, after which the reaction stream is introduced into a second autoclave at a lower temperature near the bottom, where it rises slowly and die higher density impurities settle at the bottom. The reaction stream leaves the second autoclave and its pressure is reduced to 0.3 MPa. On further reduction of the pressure and cooling, DMT precipitates and is subsequently purified.12... [Pg.546]

Figure 4.22 Slurry reactor synthesis of malic acid from fumaric acid applying a batch process followed by precipitation and crystallization... Figure 4.22 Slurry reactor synthesis of malic acid from fumaric acid applying a batch process followed by precipitation and crystallization...
Unimmobilized Corynebacterium propinquum (CGMCC No. 0886) cells containing a cobalt-dependent NHase were employed in either batch or continuous reactions for the production of nicotinamide from 3-cyanopyridine [24]. In the continuous process, membrane filtration separated precipitated product (>5 wt%) and the microbial cell catalyst from the reaction mixture, where the catalyst was then recovered and returned to the reactor using a continuous addition of aqueous 3-cyanpyridine to maintain substrate concentration at <20% (w/v), a final conversion of >99% was obtained. [Pg.172]

Dendritic catalysts can be recycled by using techniques similar to those applied with their monomeric analogues, such as precipitation, two-phase catalysis, and immobilization on insoluble supports. Furthermore, the large size and the globular structure of the dendrimer can be utilized to facilitate catalyst-product separation by means of nanofiltration. Nanofiltration can be performed batch wise or in a continuous-flow membrane reactor (CFMR). The latter offers significant advantages the conditions such as reactant concentrations and reactant residence time can be controlled accurately. These advantages are especially important in reactions in which the product can react further with the catalytically active center to form side products. [Pg.73]

There are reports of numerous examples of dendritic transition metal catalysts incorporating various dendritic backbones functionalized at various locations. Dendritic effects in catalysis include increased or decreased activity, selectivity, and stability. It is clear from the contributions of many research groups that dendrimers are suitable supports for recyclable transition metal catalysts. Separation and/or recycle of the catalysts are possible with these functionalized dendrimers for example, separation results from precipitation of the dendrimer from the product liquid two-phase catalysis allows separation and recycle of the catalyst when the products and catalyst are concentrated in two immiscible liquid phases and immobilization of the dendrimer in an insoluble support (such as crosslinked polystyrene or silica) allows use of a fixed-bed reactor holding the catalyst and excluding it from the product stream. Furthermore, the large size and the globular structure of the dendrimers enable efficient separation by nanofiltration techniques. Nanofiltration can be performed either batch wise or in a continuous-flow membrane reactor (CFMR). [Pg.146]

Cabral and coworkers [253] have investigated the batch mode synthesis of a dipeptide acetyl phenylalanine leucinamide (AcPhe-Leu-NH2) catalyzed by a-chymotrypsin in a ceramic ultrafiltration membrane reactor using a TTAB/oc-tanol/heptane reverse micellar system. Separation of the dipeptide was achieved by selective precipitation. Later on the same group successfully synthesized the same dipeptide in the same reactor system in a continuous mode [254] with high yields (70-80%) and recovery (75-90%). The volumetric production was as high as 4.3 mmol peptide/l/day with a purity of 92%. The reactor was operated for seven days continuously without any loss of enzyme activity. Hakoda et al. [255] proposed an electro-ultrafiltration bioreactor for separation of RMs containing enzyme from the product stream. A ceramic membrane module was used to separate AOT-RMs containing lipase from isooctane. Application of an electric field enhanced the ultrafiltration efficiency (flux) and it further improved when the anode and cathode were placed in the permeate and the reten-tate side respectively. [Pg.165]

The fulminate is precipitated in the form of greyish needles. When the reaction is complete, the reactor is allowed to stand for approximately 30 min while the contents are cooled. 1-2 1. of water are then poured in and the liquid is decanted from above the precipitated crystals. The precipitate is transferred to a cloth filter and washed with distilled water until completely free of acid. The product is then screened on a silk sieve (approximately 100 mesh/cm2) which retains the larger crystals. The smaller crystals are collected for direct use. The large ones are ground under water, passed through the same sieve and added to the previous batch. 125 parts of fulminate are obtainable from 100 parts of mercury, which corresponds to a yield of 88%. [Pg.150]

The lead picrate for this purpose was produced in the following way [42]. Into a stainless-steel reactor equipped with a stirrer of the type used for the manufacture of lead azide and other initiators (cf. Fig. 49) 8 1. of a solution containing 1.44 kg of lead nitrate and 151. of ice water were poured. Fifteen litres of a solution containing 1.5 kg of picric acid were then added. During the reaction the temperature should be maintained between 6 and 10°C. Since the temperature rises with the precipitation of lead picrate, 7-8 more litres of ice water must be poured into the reactor, usually a few minutes after the picrate has begun to precipitate. After 4 hr the liquid was decanted from above the precipitate the latter was transferred to a cloth filter and washed with alcohol (101.) to which an aqueous solution of lead, nitrate (500 ml of a 30% solution) has been added to avoid the dissolution of lead picrate during washing. 2.2 kg of product was obtainable from one batch. [Pg.213]

In semi-batch operation, the SCISR is first filled with a solution of sodium silicate with certain concentration, and then a sulfuric acid solution of a given concentration is dripped at a certain rate into the reactor to react with the sodium silicate at a controlled temperature. The reaction continues for a certain interval of time after the dripping has finished. Stirring is then stopped for ageing of the precipitate for a term, and then the precipitate is sampled and the sample is measured with a laser particle-measuring instrument of FAM type to obtain the sizes and size distribution of the particles in the wet product. [Pg.274]

Donnet, M., Bowen, P., Jongen, N., Lemaitre, J., Hofmann, H., Schreiner, A., Jones, A. G., Schenk, R., Hofmann, C., Successful scale-up from millilitre batch optimization to a small scale continuous production using the segmented flow tubular reactor example of calcium carbonate precipitation, Chem. Eng. Trans. 2002, 1,1353-1358. [Pg.280]


See other pages where Precipitators batch precipitation reactors is mentioned: [Pg.226]    [Pg.274]    [Pg.869]    [Pg.339]    [Pg.437]    [Pg.498]    [Pg.63]    [Pg.258]    [Pg.413]    [Pg.492]    [Pg.395]    [Pg.467]    [Pg.336]    [Pg.4]    [Pg.104]    [Pg.246]    [Pg.546]    [Pg.431]    [Pg.434]    [Pg.472]    [Pg.274]    [Pg.279]    [Pg.2641]    [Pg.492]    [Pg.107]    [Pg.241]    [Pg.386]    [Pg.1]    [Pg.19]    [Pg.249]    [Pg.162]   
See also in sourсe #XX -- [ Pg.226 , Pg.229 ]




SEARCH



Batch Precipitation

Batch precipitation reactors

Batch reactor

Reactor precipitation

Reactors batch reactor

© 2024 chempedia.info