Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentiostat function

The low conductivity of high-purity water makes it difficult to study electrode processes potentiostatically, since too high an electrical resistance in the circuit can affect the proper functioning of a potentiostat, and it can also introduce large iR errors. The increase in conductivity of water with temperature has been measured and /7 -corrected polarisation data have been obtained in hot water that originally had very low conductivity at room temperature. Other results in high-temperature water are all for tests where the conductivity was deliberately increased through the addition of electrolytes. [Pg.1120]

Accordingly, the resulting current reflects the rate at which electrons move across the electrode-solution interface. Potentiostatic techniques can thus measure any chemical species that is electroactive, in other words, that can be made to reduce or oxidize. Knowledge of the reactivity of functional group in a given compound can be used to predict its electroactivity. Nonelectroactive compounds may also be detected in connection with indirect or derivatization procedures. [Pg.3]

Figure 13. Schematic diagram of the measurement of the ionic conductivity of a conducting polymer membrane as a function of oxidation state (potential), (a) Pt electrodes (b) potentiostat (c) gold minigrid (d) polymer film (e) electrolyte solution (0 dc or ac resistance measurement.133 (Reprinted with permission from J. Am Chem Soc. 104, 6139-6140, 1982. Copyright 1982, American Chemical Society.)... Figure 13. Schematic diagram of the measurement of the ionic conductivity of a conducting polymer membrane as a function of oxidation state (potential), (a) Pt electrodes (b) potentiostat (c) gold minigrid (d) polymer film (e) electrolyte solution (0 dc or ac resistance measurement.133 (Reprinted with permission from J. Am Chem Soc. 104, 6139-6140, 1982. Copyright 1982, American Chemical Society.)...
Figure 5.12. Time evolution of catalyst potential and work function for Pt/p"-Al203 during potentiostatic transients, T = 200°C, po2 = 10 10 Pa.25... Figure 5.12. Time evolution of catalyst potential and work function for Pt/p"-Al203 during potentiostatic transients, T = 200°C, po2 = 10 10 Pa.25...
Although it is not necessary, the galvanostat-potentiostat is better to incorporate a function generator in order to allow for cyclic voltammetry or other transient electrochemical techniques. [Pg.549]

Steady state measurements of NO decomposition in the absence of CO under potentiostatic conditions gave the expected result, namely rapid self-poisoning of the system by chemisorbed oxygen addition of CO resulted immediately in a finite reaction rate which varied reversibly and reproducibly with changes in catalyst potential (Vwr) and reactant partial pressures. Figure 1 shows steady state (potentiostatic) rate data for CO2, N2 and N2O production as a function of Vwr at 621 K for a constant inlet pressures (P no, P co) of NO and CO of 0.75 k Pa. Also shown is the Vwr dependence of N2 selectivity where the latter quantity is defined as... [Pg.515]

The micro reactor contained a heating function (imlike [R 4] and the other versions of this reactor concept [R 5] and [R 6], decribed below) via a heating wire connected to a potentiostat [19], This wire was integrated into the micro reactor by placing it in the mold before pouring the liquid PDMS. [Pg.387]

A certain potential is applied to the electrode with the potentiostatic equipment, and the variation of current is recorded as a function of time. At the very beginning a large current flows, which is due largely to charging of the electrode s EDL as required by the potential change. The maximum current and the time of EDL charging depend not only on the electrode system and size but also on the parameters of the potentiostat used. When this process has ended, mainly the faradaic component of current remains, which in particular will cause the changes in surface concentrations described in Section 11.2. [Pg.200]

V vs. Ag/AgCl were collected as functions of decomposition time. The electrode potential was initially held at 0.75 V to produce a clean Pt(lll) surface, and was next switched to monitor the CO uptake. Starting at Os, where CO adsorption (from HCOOH decomposition) had not yet begun, the potentiostatic experiment lasted until about 500 s of the progress of reaction. The spectral position is typical of the... [Pg.392]

Fig. 5.18 Potentiostatic methods (A) single-pulse method, (B), (C) double-pulse methods (B for an electrocrystallization study and C for the study of products of electrolysis during the first pulse), (D) potential-sweep voltammetry, (E) triangular pulse voltammetry, (F) a series of pulses for electrode preparation, (G) cyclic voltammetry (the last pulse is recorded), (H) d.c. polarography (the electrode potential during the drop-time is considered constant this fact is expressed by the step function of time—actually the potential increases continuously), (I) a.c. polarography and (J) pulse polarography... Fig. 5.18 Potentiostatic methods (A) single-pulse method, (B), (C) double-pulse methods (B for an electrocrystallization study and C for the study of products of electrolysis during the first pulse), (D) potential-sweep voltammetry, (E) triangular pulse voltammetry, (F) a series of pulses for electrode preparation, (G) cyclic voltammetry (the last pulse is recorded), (H) d.c. polarography (the electrode potential during the drop-time is considered constant this fact is expressed by the step function of time—actually the potential increases continuously), (I) a.c. polarography and (J) pulse polarography...
Alternatively, one may control the electrode potential and monitor the current. This potentiodynamic approach is relatively easy to accomplish by use of a constant-voltage source if the counterelectrode also functions as the reference electrode. As indicated in the previous section, this may lead to various undesirable effects if a sizable ohmic potential drop exists between the electrodes, or if the overpotential of the counterelectrode is strongly dependent on current. The potential of the working electrode can be controlled instead with respect to a separate reference electrode by using a potentiostat. The electrode potential may be varied in small increments or continuously. It is also possible to impose the limiting-current condition instantaneously by applying a potential step. [Pg.229]

Emersion has been shown to result in the retention of the double layer structure i.e, the structure including the outer Helmholtz layer. Thus, the electric double layer is characterised by the electrode potential, the surface charge on the metal and the chemical composition of the double layer itself. Surface resistivity measurements have shown that the surface charge is retained on emersion. In addition, the potential of the emersed electrode, , can be determined in the form of its work function, , since and represent the same quantity the electrochemical potential of the electrons in the metal. Figure 2.116 is from the work of Kotz et al. (1986) and shows the work function of a gold electrode emersed at various potentials from a perchloric acid solution the work function was determined from UVPES measurements. The linear plot, and the unit slope, are clear evidence that the potential drop across the double layer is retained before and after emersion. The chemical composition of the double layer can also be determined, using AES, and is consistent with the expected solvent and electrolyte. In practice, the double layer collapses unless (i) potentiostatic control is maintained up to the instant of emersion and (ii) no faradaic processes, such as 02 reduction, are allowed to occur after emersion. [Pg.227]

Controlled potential methods have been successfully applied to ion-selective electrodes. The term voltammetric ion-selective electrode (VISE) was suggested by Cammann [60], Senda and coworkers called electrodes placed under constant potential conditions amperometric ion-selective electrodes (AISE) [61, 62], Similarly to controlled current methods potentiostatic techniques help to overcome two major drawbacks of classic potentiometry. First, ISEs have a logarithmic response function, which makes them less sensitive to the small change in activity of the detected analyte. Second, an increased charge of the detected ions leads to the reduction of the response slope and, therefore, to the loss of sensitivity, especially in the case of large polyionic molecules. Due to the underlying response mechanism voltammetric ISEs yield a linear response function that is not as sensitive to the charge of the ion. [Pg.118]

Bond et al. [791 ] studied strategies for trace metal determination in seawater by ASV using a computerised multi-time domain measurement method. A microcomputer-based system allowed the reliability of the determination of trace amounts of metals to be estimated. Peak height, width, and potential were measured as a function of time and concentration to construct the database. Measurements were made with a potentiostat polarographic analyser connected to the microcomputer and a hanging drop mercury electrode. The presence of surfactants, which presented a matrix problem, was detected via time domain dependent results and nonlinearity of the calibration. A decision to pretreat the samples could then be made. In the presence of surfactants, neither a direct calibration mode nor a linear standard addition method yielded precise data. Alternative ways to eliminate the interferences based either on theoretical considerations or destruction of the matrix needed to be considered. [Pg.270]

By adsorbing alkali metals on a metal substrate, the work function of the substrate can be significantly altered in a similar manner to potentiostatically controlling the electrode potential.53 For instance, ca. 0.03 ML K lowers the work function of Pt(l 11) by 1.0 eV, but because of the low coverage, does not chemically interact with most adsorbates. The surface potential on the hydrogen electrode scale can be calculated using the relation... [Pg.319]

Fig. 5.2 Thickness of anodic oxides formed potentiostatically on (100) Si in 3% NH4OH, as a function of applied potential for various anodization times. Illumination was provided for n-type Si. After [Bal4]. Fig. 5.2 Thickness of anodic oxides formed potentiostatically on (100) Si in 3% NH4OH, as a function of applied potential for various anodization times. Illumination was provided for n-type Si. After [Bal4].
Figure 53 Potentiostatic behaviour for an ECE mechanism as a function of the rate constant kfof the interposed chemical reaction... Figure 53 Potentiostatic behaviour for an ECE mechanism as a function of the rate constant kfof the interposed chemical reaction...

See other pages where Potentiostat function is mentioned: [Pg.146]    [Pg.63]    [Pg.139]    [Pg.589]    [Pg.146]    [Pg.63]    [Pg.139]    [Pg.589]    [Pg.244]    [Pg.452]    [Pg.306]    [Pg.124]    [Pg.1116]    [Pg.1118]    [Pg.1119]    [Pg.1122]    [Pg.537]    [Pg.28]    [Pg.104]    [Pg.218]    [Pg.343]    [Pg.436]    [Pg.252]    [Pg.181]    [Pg.613]    [Pg.682]    [Pg.334]    [Pg.306]    [Pg.227]    [Pg.200]    [Pg.42]    [Pg.254]    [Pg.244]    [Pg.234]    [Pg.520]    [Pg.346]    [Pg.13]   
See also in sourсe #XX -- [ Pg.156 ]




SEARCH



Potentiostat

Potentiostatic

Potentiostats

© 2024 chempedia.info