Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reference Electrodes separated

Prepare an approximately 0.1 M silver nitrate solution. Place 0.1169 g of dry sodium chloride in the beaker, add 100 mL of water, and stir until dissolved. Use a silver wire electrode (or a silver-plated platinum wire), and a silver-silver chloride or a saturated calomel reference electrode separated from the solution by a potassium nitrate-agar bridge (see below). Titrate the sodium chloride solution with the silver nitrate solution following the general procedure described in Experiment 1 it is important to have efficient stirring and to wait long enough after each addition of titrant for the e.m.f. to become steady. Continue the titration 5 mL beyond the end point. Determine the end point and thence the molarity of the silver nitrate solution. [Pg.582]

The above comparative evaluation of starter battery separators refers to moderate ambient temperatures the standard battery tests arc performed at 40 or 50 °C. What happens, however, on going to significantly higher temperatures, such as 60 or 75 °C This question cannot be answered without considering the alloys used batteries with antimonial alloys show a water consumption that rises steeply with increasing temperature [40], leaving as the only possibilities for such applications either the hybrid construction, i.c., positive electrode with low-antimony alloy, negative electrode lead-calcium, or even both... [Pg.271]

Fig. 16. Small-scalo laboratory cell for preparative electrolysis. A, Pt gauze working electrode. B, Pt sheet secondary electrode. C, Reference electrode. D, Luggin capillary on a syringe barrel so that the position of the tip of the Luggin probe relative to the working electrode is readily adjustable. E, Glass sinter to separate anode and cathode compartments. F, Gas inlet to allow stirring with inert gas or the continuous introduction of reactant. G, Three-way tap where a boundary between the reference electrode and the working solutions may be formed. Fig. 16. Small-scalo laboratory cell for preparative electrolysis. A, Pt gauze working electrode. B, Pt sheet secondary electrode. C, Reference electrode. D, Luggin capillary on a syringe barrel so that the position of the tip of the Luggin probe relative to the working electrode is readily adjustable. E, Glass sinter to separate anode and cathode compartments. F, Gas inlet to allow stirring with inert gas or the continuous introduction of reactant. G, Three-way tap where a boundary between the reference electrode and the working solutions may be formed.
Alternatively, one may control the electrode potential and monitor the current. This potentiodynamic approach is relatively easy to accomplish by use of a constant-voltage source if the counterelectrode also functions as the reference electrode. As indicated in the previous section, this may lead to various undesirable effects if a sizable ohmic potential drop exists between the electrodes, or if the overpotential of the counterelectrode is strongly dependent on current. The potential of the working electrode can be controlled instead with respect to a separate reference electrode by using a potentiostat. The electrode potential may be varied in small increments or continuously. It is also possible to impose the limiting-current condition instantaneously by applying a potential step. [Pg.229]

The dissolved oxygen content of a solution can be determined by measuring the diffusion current that results at a selected voltage. The Clark electrode was developed for this purpose and various modifications have subsequently been introduced. It consists basically of a platinum electrode separated from the sample by a membrane which is permeable to oxygen, e.g. Teflon or polyethylene. A reference electrode of silver/silver chloride in potassium chloride is used to complete the system (Figure 4.21). When a voltage that is sufficient to give the... [Pg.190]

The experiments were conducted in a one-compartment cell with the reference electrode separated from the main compartment by a Luggln capillary and a closed electrolyte-wetted stopcock. The counter electrode was a gold wire loop and the reference electrode... [Pg.251]

The measurement of pH is carried out using a sensing electrode, which is sensitive to hydrogen-ion activity and a reference electrode. Combination electrodes incorporating both of these electrodes are also suitable for most applications. Separate reference and sensing electrodes are normally used only for high-precision research applications. [Pg.232]

Figure 18.3—Principle of ISE measurement of fluoride ions in solution using a double junction reference electrode. The reference electrode is inserted into a separate chamber that contains the auxiliary electrolyte in order to avoid osmosis of KC1 into the sample solution. Also, 1 M KN03 can be used for F , Cl, CN or Ag+ determination. The measurement involves the use of a high impedance millivoltmeter (pH meter type). A version of an all-solid fluoride electrode is shown on the right. Figure 18.3—Principle of ISE measurement of fluoride ions in solution using a double junction reference electrode. The reference electrode is inserted into a separate chamber that contains the auxiliary electrolyte in order to avoid osmosis of KC1 into the sample solution. Also, 1 M KN03 can be used for F , Cl, CN or Ag+ determination. The measurement involves the use of a high impedance millivoltmeter (pH meter type). A version of an all-solid fluoride electrode is shown on the right.
Two analytical methods for priority pollutants specified by the USEPA (38) use HPLC separation and fluorescence or electrochemical detection. Method 605, 40 CFR Part 136, determines benzidine and 3,3-dichlorobenzidine by amperometric detection at +0.80 V, versus a silver/silver chloride reference electrode, at a glassy carbon electrode. Separation is achieved with a 1 1 (v/v) mixture of acetonitrile and a pH 4.7 acetate buffer (1 M) under isocratic conditions on an ethyl-bonded reversed-phase column. Lower limits of detection are reported to be 0.05 /xg/L for benzidine and 0.1 /xg/L for 3,3-dichlorobenzidine. Method 610, 40 CFR Part 136, determines 16 PAHs by either GC or HPLC. The HPLC method is required when all 16 PAHs need to be individually determined. The GC method, which uses a packed column, cannot adequately individually resolve all 16 PAHs. The method specifies gradient elution of the PAHs from a reversed-phase analytical column and fluorescence detection with an excitation wavelength of 280 nm and an emission wavelength of 389 nm for all but three PAHs naphthalene, acenaphthylene, and acenaphthene. As a result of weak fluorescence, these three PAHs are detected with greater sensitivity by UV-absorption detection at 254 nm. Thus, the method requires that fluores-... [Pg.129]

The invention of the dropping mercury electrode in 1922 by Heyrovsky [1] led to the development and the extensive use of polaro-graphy, which must be considered to be the first linear sweep voltammetry method. In the period from 1947 to 1959, the theory and practice of voltammetry at solid stationary electrodes were developed [2—20]. Due to the significant differences in the mode of mass transport to the two types of electrode, the response and the range of utility differ markedly. Thus, the techniques are sufficiently different that they must be treated separately. The generally accepted convention is that polaro-graphy refers to measurements at the dropping mercury electrode, while measurements at stationary electrodes are referred to as linear sweep voltammetry (LSV). [Pg.145]

This reference reports the appearance of a light-induced potential difference between two electrodes separated by a specially organized molecular multilayer. A barium electrode and a semitransparent aluminium electrode, which have substantially different electronic work functions JAl > c/Ba, have been used in these studies. The two electrodes were separated by a multilayer system consisting of a layer of isolating molecules covered by a... [Pg.321]

Figure 17.11 Transmission spectroelectrochemistry cell designed for use with room-temperature haloaluminate melts and other moisture-reactive, corrosive liquids, (a) Auxiliary electrode and reference electrode compartments, (b) quartz cuvette containing the RVC-OTE, (c) brass clamping screw, (d) passageway between the separator and OTE compartment, (e) fritted glass separator, (f) A1 plate, (g) lower cell body (Teflon), (h) upper cell body (Teflon). This cell is normally used inside a glove box and is optically accessed with fiber optic waveguides. [From E. H. Ward and C. L. Hussey, Anal. Chem. 59 213 (1987), with permission.]... Figure 17.11 Transmission spectroelectrochemistry cell designed for use with room-temperature haloaluminate melts and other moisture-reactive, corrosive liquids, (a) Auxiliary electrode and reference electrode compartments, (b) quartz cuvette containing the RVC-OTE, (c) brass clamping screw, (d) passageway between the separator and OTE compartment, (e) fritted glass separator, (f) A1 plate, (g) lower cell body (Teflon), (h) upper cell body (Teflon). This cell is normally used inside a glove box and is optically accessed with fiber optic waveguides. [From E. H. Ward and C. L. Hussey, Anal. Chem. 59 213 (1987), with permission.]...
The porous platinum/Teflon electrodes separate the electrolytic cell from the gaseous reference chamber on one side and the sample chamber on the working electrode side. The applied voltage is controlled by a potentiostat. The sample enters into the electrolytic cell through the porous electrodes, the pore size of which also needs to be closely controlled in order to prevent their flooding with the solvent. An example of an electrochemical reaction of interest is oxidation of methane under conditions of humid air. [Pg.232]

Fig. 34.5. Capillary electrophoretic system with electrochemical detection. (A) Glass microchip, (B) separation channel, (C) injection channel, (D) pipette tip for buffer reservoir, (E) pipette tip for sample reservoir, (F) pipette tip for reservoir not used, (G) Plexiglass body, (H) buffer reservoir, (I) sample reservoir, (J) blocked (unused) reservoir, (K) detection reservoir, (L) screen-printed working-electrode strip, (M) screen-printed working electrode, (N) silver ink contact, (0) insulator, (P) tape (spacer), (Q) channel outlet, (R) counter electrode, (S) reference electrode, (T) high-voltage power electrodes, (U) plastic screw. For clarity, the chip, its holder, and the screen-printed electrode strip are separated, and dimensions are not in scale. Reprinted with permission from Ref. [112]. Copyright (1999) American Chemical Society. Fig. 34.5. Capillary electrophoretic system with electrochemical detection. (A) Glass microchip, (B) separation channel, (C) injection channel, (D) pipette tip for buffer reservoir, (E) pipette tip for sample reservoir, (F) pipette tip for reservoir not used, (G) Plexiglass body, (H) buffer reservoir, (I) sample reservoir, (J) blocked (unused) reservoir, (K) detection reservoir, (L) screen-printed working-electrode strip, (M) screen-printed working electrode, (N) silver ink contact, (0) insulator, (P) tape (spacer), (Q) channel outlet, (R) counter electrode, (S) reference electrode, (T) high-voltage power electrodes, (U) plastic screw. For clarity, the chip, its holder, and the screen-printed electrode strip are separated, and dimensions are not in scale. Reprinted with permission from Ref. [112]. Copyright (1999) American Chemical Society.
Considering that the current in a typical laboratory cell is in the mA-to-A range and that the resistance in non-aqueous solvents may easily amount to several hundred ohms, the iRs drop can reach several volts it follows that A V cannot be directly related to A E. However, we are usually concerned only with the potential of the electrode at which the conversion of interest takes place, i.e. the anode in oxidations and the cathode in reductions. This electrode is referred to as the working electrode and the other as the counter electrode. The solution to the problem of measuring the potential of the working electrode is to introduce a third electrode, a reference electrode, and then measure the potential of the working electrode relative to that of the reference electrode in a separate measurement in which very little or no current flows (see Section 6.4.5). [Pg.133]

For detection of DNA fragments, Fe(phen)32+ was used as the electrochemi-cally active intercalation reagent. The constant background current from free Fe(phen)32+ decreased in the presence of the DNA-Fe(phen)32+ complexes. Therefore, this is an indirect amperometric detection method. It was found that a distance of 300 pm, instead of 600 pm, between the working electrode and reference electrode has produced less electrical interference (in the form of a sloping baseline), allowing the use of a separation voltage up to 1200 V (240 V/cm) [745]. [Pg.212]

A somewhat mote convenient cell with a less ideal current distribution is shown in Figure 6.16. Note the position of the reference-electrode tip between the counter-electrode separator and the mercury pool. Both of these cells have approximately 10-cm2 mercury-pool working electrodes with 7-mL sample solution volumes. [Pg.277]

There is no fundamental difference between the two half-cells or electrodes in a cell for measuring emf (electromotive force), especially in molten salts. However, it is usual to designate one of the electrodes as reference electrode if it is used for the measurement of an emf series. In many cases a diaphragm is used to separate the two half-cells. [Pg.492]

It is also possible to scan a pair of reference or pseudoreference electrodes separated by a small, fixed distance of a few micrometers to measure the local potential field gradient, dvldl, and estimate the local current density from Eq. (48) (128). This is a slightly more sophisticated measurement because the anodic or cathodic character of local sites can be determined from the polarity of the current, and the intensity of the attack can be estimated from the current density flowing in solution. The difficulty with this arrangement is that the potential difference between two closely spaced reference electrodes in a conductive solution is usually less than 1 microvolt. The stability of reference electrodes is on the order of microvolts, and thus it often exceeds the magnitude of the potential difference signal. This imposes a fundamental limitation on the usefulness of this technique. [Pg.336]

Figure 53 Schematic illustration of the pseudoreference electrode pair used to make LEIS measurements. In this diagram, d refers to the electrode separation and h refers to the height of the probe from the working electrode surface. (From F. Zou, D. Thierry, H. S. Isaacs. J. Electrochem. Soc. 144, 1957 (1997).)... Figure 53 Schematic illustration of the pseudoreference electrode pair used to make LEIS measurements. In this diagram, d refers to the electrode separation and h refers to the height of the probe from the working electrode surface. (From F. Zou, D. Thierry, H. S. Isaacs. J. Electrochem. Soc. 144, 1957 (1997).)...
Internal electrolyte — Electrolyte solution filling the internal chamber of a -> reference electrode or - ion-selective electrode, separated from an external solution by a -> separator. In reference electrodes a constant composition and constant concentration of the internal electrolyte secure a constant potential of the -> electrode. In-... [Pg.362]

An ion-selective electrode and an external reference electrode combined into a single functional unit. A separate reference electrode is not required. [Pg.78]


See other pages where Reference Electrodes separated is mentioned: [Pg.1415]    [Pg.1415]    [Pg.1926]    [Pg.50]    [Pg.59]    [Pg.252]    [Pg.194]    [Pg.199]    [Pg.653]    [Pg.16]    [Pg.16]    [Pg.50]    [Pg.52]    [Pg.145]    [Pg.840]    [Pg.52]    [Pg.201]    [Pg.276]    [Pg.277]    [Pg.137]    [Pg.383]    [Pg.529]    [Pg.91]    [Pg.11]    [Pg.6468]    [Pg.11]    [Pg.341]   
See also in sourсe #XX -- [ Pg.2 , Pg.34 , Pg.35 , Pg.36 , Pg.38 , Pg.149 ]




SEARCH



Electrode separator

Electrodes separation

Reference electrodes

References separator

© 2024 chempedia.info