Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentiometry applications

Electrode Systems. Direct Potentiometric Measurements. Potentiometric Titrations. Null -point Potentiometry. Applications of Potentiometry. [Pg.7]

Electrode systems. Direct poientiometric measurements. Potentio-metric titrations. Null-point potentiometry. Applications of potentiometry. [Pg.531]

In potentiometry the potential of an electrochemical cell is measured under static conditions. Because no current, or only a negligible current, flows while measuring a solution s potential, its composition remains unchanged. For this reason, potentiometry is a useful quantitative method. The first quantitative potentiometric applications appeared soon after the formulation, in 1889, of the Nernst equation relating an electrochemical cell s potential to the concentration of electroactive species in the cell. ... [Pg.465]

When first developed, potentiometry was restricted to redox equilibria at metallic electrodes, limiting its application to a few ions. In 1906, Cremer discovered that a potential difference exists between the two sides of a thin glass membrane when opposite sides of the membrane are in contact with solutions containing different concentrations of H3O+. This discovery led to the development of the glass pH electrode in 1909. Other types of membranes also yield useful potentials. Kolthoff and Sanders, for example, showed in 1937 that pellets made from AgCl could be used to determine the concentration of Ag+. Electrodes based on membrane potentials are called ion-selective electrodes, and their continued development has extended potentiometry to a diverse array of analytes. [Pg.465]

If metallic electrodes were the only useful class of indicator electrodes, potentiometry would be of limited applicability. The discovery, in 1906, that a thin glass membrane develops a potential, called a membrane potential, when opposite sides of the membrane are in contact with solutions of different pH led to the eventual development of a whole new class of indicator electrodes called ion-selective electrodes (ISEs). following the discovery of the glass pH electrode, ion-selective electrodes have been developed for a wide range of ions. Membrane electrodes also have been developed that respond to the concentration of molecular analytes by using a chemical reaction to generate an ion that can be monitored with an ion-selective electrode. The development of new membrane electrodes continues to be an active area of research. [Pg.475]

Wang and Taha described an interesting application of potentiometry called batch injection. As shown in the following figure, an ion-selective electrode is placed in an inverted position in a large-volume tank, and a fixed volume of a sample or standard solution is injected toward the electrode s surface using a micropipet. [Pg.536]

IsoxazoIe-5-carboxyIic acid anilide, 3,4-diphenyI-synthesis, 6, 86 Isoxazolecarboxylic acids applications, 6, 128 IR spectra, 6, 5 potentiometry, 6, 11 reactions, 6, 52 synthesis, 6,27, 85-86 thermochemistry, 6, 10 IsoxazoIe-3,4-dicarboxyIic acid esters... [Pg.688]

The potentiometry sensor (ion-selective electrode) controls application for determination of polymeric surface-active substances now gets the increasing value. Potentiometry sensor controls are actively used due to simple instmment registration, a wide range of determined concentrations, and opportunity of continuous substances contents definition. That less, the ionometry application for the cation polymeric SAS analysis in a solution is limited by complexity of polycation charge determination and ion-exchanger synthesis. [Pg.108]

Detailed and shorter39 45 reviews of the electrochemical promotion literature prior to 1996 have been published, mainly addressed either to the catalytic or to the electrochemical community. Earlier applications of solid electrolytes in catalysis, including solid electrolyte potentiometry and electrocatalysis have been reviewed previously. The present book is the first on the electrochemical activation of catalytic reactions and is addressed both to the electrochemical and catalytic communities. We stress both the electrochemical and catalytic aspects of electrochemical promotion and hope that the text will be found useful and easy to follow by all readers, including those not frequently using electrochemical, catalytic and surface science methodology and terminology. [Pg.8]

The trade-offs between direct calibration and standard addition are treated in Ref 103. The same recovery as is found for the native analyte has to be obtained for the spiked analyte (see Section 3.2). The application of spiking to potentiometry is reviewed in Refs. 104 and 105. A worked example for the application of standard addition methodology to FIA/AAS is found in Ref 106. Reference 70 discusses the optimization of the standard addition method. [Pg.122]

The remarkable selectivity that is inherent in the reaction of an antibody with the antigen or hapten against which it was raised is the basis for the extensive use of immunoassay for the rapid analysis of samples in clinical chemistry. Immunochemical reactions offer a means by which the applicability of potentiometric techniques can be broadened. A number of strategies for incorporating immunoassay into the methodology of potentiometry have been explored... [Pg.14]

Principles and Characteristics A substantial percentage of chemical analyses are based on electrochemistry, although this is less evident for polymer/additive analysis. In its application to analytical chemistry, electrochemistry involves the measurement of some electrical property in relation to the concentration of a particular chemical species. The electrical properties that are most commonly measured are potential or voltage, current, resistance or conductance charge or capacity, or combinations of these. Often, a material conversion is involved and therefore so are separation processes, which take place when electrons participate on the surface of electrodes, such as in polarography. Electrochemical analysis also comprises currentless methods, such as potentiometry, including the use of ion-selective electrodes. [Pg.666]

One of the most fruitful uses of potentiometry in analytical chemistry is its application to titrimetry. Prior to this application, most titrations were carried out using colour-change indicators to signal the titration endpoint. A potentiometric titration (or indirect potentiometry) involves measurement of the potential of a suitable indicator electrode as a function of titrant volume. The information provided by a potentiometric titration is not the same as that obtained from a direct potentiometric measurement. As pointed out by Dick [473], there are advantages to potentiometric titration over direct potentiometry, despite the fact that the two techniques very often use the same type of electrodes. Potentiometric titrations provide data that are more reliable than data from titrations that use chemical indicators, but potentiometric titrations are more time-consuming. [Pg.668]

Applications Potentiometry finds widespread use for direct and selective measurement of analyte concentrations, mainly in routine analyses, and for endpoint determinations of titrations. Direct potentiometric measurements provide a rapid and convenient method for determining the activity of a variety of cations and anions. The most frequently determined ion in water is the hydrogen ion (pH measurement). Ion chromatography combined with potentiometric detection techniques using ISEs allows the selective quantification of selected analytes, even in complex matrices. The sensitivity of the electrodes allows sub-ppm concentrations to be measured. [Pg.669]

Apart from the necessity of excluding interferences from any diffusion potential, normal potentiometry requires accurate determination of the emf, i.e., without any perceptible drawing off of current from the cell therefore, usually one uses the so-called Poggendorff method for exact compensation measurement the later application of high-resistance glass and other membrane electrodes has led to the modern commercial high-impedance pH and PI meters with high amplification in order to detect the emf null point in the balanced system. [Pg.45]

Vol. 66 Solid Phase Biochemistry Analytical and Synthetic Aspects. Edited by William H. Scouten Vol. 67 An Introduction to Photoelectron Spectroscopy. By Pradip K. Ghosh Vol. 68 Room Temperature Phosphorimetry for Chemical Analysis. By Tuan Vo-Dinh Vol. 69 Potentiometry and Potentiometric Titrations. By E. P. Serjeant Vol. 70 Design and Application of Process Analyzer Systems. By Paul E. Mix Vol. 71 Analysis of Organic and Biological Surfaces. Edited by Patrick Echlin Vol. 72 Small Bore Liquid Chromatography Columns Their Properties and Uses. Edited by Raymond P.W. Scott... [Pg.652]

The participation of cations in redox reactions of metal hexacyanoferrates provides a unique opportunity for the development of chemical sensors for non-electroactive ions. The development of sensors for thallium (Tl+) [15], cesium (Cs+) [34], and potassium (K+) [35, 36] pioneered analytical applications of metal hexacyanoferrates (Table 13.1). Later, a number of cationic analytes were enlarged, including ammonium (NH4+) [37], rubidium (Rb+) [38], and even other mono- and divalent cations [39], In most cases the electrochemical techniques used were potentiometry and amperometry either under constant potential or in cyclic voltammetric regime. More recently, sensors for silver [29] and arsenite [40] on the basis of transition metal hexacyanoferrates were proposed. An apparent list of sensors for non-electroactive ions is presented in Table 13.1. [Pg.439]

Some of the typical parameters or properties utilized for NIR detection are potentiometry,(5) absorbance,(52 54) refractometry/18,19) or fluorescence spectros-copy.(55) Of these, has proven to be the most valuable detection method in fiber optic applications/2,56) In standard spectroscopic techniques, the detection limits of a method are greatly determined by the instrument and by the chemical method used for the analysis. However, in OFCD research the detection limits are governed by a series of other variables including the dye, the matrix, and the instrument. By optimizing these variables, low detection limits can be obtained with this technique. [Pg.191]

In a related application, polyelectrolyte microgels based on crosslinked cationic poly(allyl amine) and anionic polyfmethacrylic acid-co-epoxypropyl methacrylate) were studied by potentiometry, conductometry and turbidimetry [349]. In their neutralized (salt) form, the microgels fully complexed with linear polyelectrolytes (poly(acrylic acid), poly(acrylic acid-co-acrylamide), and polystyrene sulfonate)) as if the gels were themselves linear. However, if an acid/base reaction occurs between the linear polymers and the gels, it appears that only the surfaces of the gels form complexes. Previous work has addressed the fundamental characteristics of these complexes [350, 351] and has shown preferential complexation of cationic polyelectrolytes with crosslinked car-boxymethyl cellulose versus linear CMC [350], The departure from the 1 1 stoichiometry with the non-neutralized microgels may be due to the collapsed nature of these networks which prevents penetration of water soluble polyelectrolyte. [Pg.29]


See other pages where Potentiometry applications is mentioned: [Pg.36]    [Pg.686]    [Pg.153]    [Pg.140]    [Pg.119]    [Pg.399]    [Pg.58]    [Pg.251]    [Pg.272]    [Pg.669]    [Pg.64]    [Pg.111]    [Pg.213]    [Pg.331]    [Pg.360]    [Pg.434]    [Pg.247]    [Pg.123]    [Pg.19]    [Pg.627]    [Pg.177]    [Pg.172]    [Pg.699]    [Pg.6]    [Pg.148]   
See also in sourсe #XX -- [ Pg.247 ]

See also in sourсe #XX -- [ Pg.183 ]

See also in sourсe #XX -- [ Pg.247 ]

See also in sourсe #XX -- [ Pg.38 , Pg.39 , Pg.40 , Pg.41 , Pg.42 , Pg.43 ]




SEARCH



Analytical Applications of Potentiometry

Applications of Direct Potentiometry

Applications of Potentiometry

Applications of Potentiometry in Non-Aqueous Solutions

Potentiometry

Potentiometry by ISE—Units of Measure and Reporting for Clinical Applications

© 2024 chempedia.info