Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium methylamine

H-donor 22, 985 reactant 23, 5 reagent 21, 602 22, 256 C-hydroxymethylation with - 23. 753 Methylamine s. under Potassium Methylamines... [Pg.274]

Dimethylaminomethylindole (gramine). Cool 42 5 ml. of aqueous methylamine solution (5 2N ca. 25 per cent, w/v) contained in an 100 ml. flask in an ice bath, add 30 g. of cold acetic acid, followed by 17 -2 g. of cold, 37 per cent, aqueous formaldehyde solution. Pour the solution on to 23 -4 g. of indole use 10 ml. of water to rinse out the flask. Allow the mixture to warm up to room temperature, with occasional shaking as the indole dissolves. Keep the solution at 30-40° overnight and then pour it, with vigorous stirring, into a solution of 40 g. of potassium hydroxide in 300 ml. of water crystals separate. Cool in an ice bath for 2 hours, collect the crystalline solid by suction flltration, wash with three 50 ml. portions of cold water, and dry to constant weight at 50°. The yield of gramine is 34 g. this is quite suitable for conversion into 3-indoleacetic acid. The pure compound may be obtained by recrystaUisation from acetone-hexane m.p. 133-134°. [Pg.1013]

The intermediate products (I) and (II) lose water, forming hydrohydrastinine and oxyhydrastinine respectively. Alkaline permanganate converts oxyhydrastinine into hydrastinic acid (III), C HgOgN, needles, m.p. 164° this in turn is oxidised by dilute nitric acid to hydrastic acid methylimide (IV), CJ0H7O4N, m.p. 227-8°, which, when warmed with potassium hydroxide solution, furnishes methylamine and hydrastic acid (V). [Pg.164]

Tliis methodology has also been extended to the use of liquid methylamine/ potassium permanganate (LMA/PP system). When this system is applied to a number of 3-nitro-l,8-naphthyridines (92a-92g), the C-4 position could be successfully substituted by methylamino group yielding 93a-93f. Tire intermediary 4-methylamino-[Pg.305]

As discussed before, in liquid ammonia/potassium permanganate nucleo-phugal substituents at C-2, such as ones present in the naphthyridines (84c, 84e, 84h, 84i, 841, and 84m), could not be replaced by the amino group only SnH substitution takes place. However, it has been observed that in the reaction of the 2-chloro-3-nitro-l,8-naphthyridine (92c) with liquid methylamine/potassium permanganate S H substitution as well as methylamino-dechlorination takes place, yielding 2,4-bis-(methylamino)-3-nitro-l,8-naphthyridine (93c). [Pg.305]

Potassium hydroxide Cysteamine Carbon disulfide Dimethyl sulfate Sodium Ammonia Cyanamide Methylamine ... [Pg.342]

The first synthesis of a 3//-3-benzazepine, e.g. 65 (R1 = R2 = Me), was achieved by the condensation of phthalaldehyde with a bis[(alkoxycarbonyl)methyl]methylamine.24"25 With sodium methoxide as the base, A%V-bis[(methoxycarbonyl)methyl]pheiiylaniine condenses with the dialdehyde in a similar manner to give dimethyl 3-phenyl-3//-3-benzazepine-2,4-dicar-boxy late (65, Rl — Ph R2 — Me).99 However, replacement of methoxide by potassium tert-butoxide results in formation of 3-phenyl-3//-3-benzazepine-2,4-dicarboxylic acid (65, R1 = Ph R2 = H).25... [Pg.221]

The product can also be prepared from benzaldehyde, di-methylamine, and potassium cyanide in cold acetic acid and aqueous ethanol.5... [Pg.26]

When bases are present, nitromethane gives rise to explosive mixtures that are sensitive. Potassium hydroxide, sodium carbonate, ammonia, phenylamine, 1,2-diaminoethane, morpholine and methylamine have been involved in accidents of this nature. [Pg.297]

Addition of bases or acids to nitromethane renders it susceptible to initiation by a detonator. These include aniline, diaminoethane, iminobispropylamine, morpholine, methylamine, ammonium hydroxide, potassium hydroxide, sodium carbonate, and formic, nitric, sulfuric or phosphoric acids. [Pg.184]

Solvated electrons were first produced in liquid ammonia when Weyl (1864) dissolved sodium and potassium in it the solution has an intense blue color. Cady (1897) found the solution conducts electricity, attributed by Kraus (1908) to an electron in a solvent atmosphere. Other workers discovered solvated electrons in such polar liquids as methylamine, alcohols, and ethers (Moissan, 1889 Scott et al, 1936). Finally, Freed and Sugarman (1943) showed that in a dilute metal—ammonia solution, the magnetic susceptibility corresponds to one unpaired spin per dissolved metal atom. [Pg.145]

Mesityl oxide Methanol Methylamine N- M et hy lformam i de Methyl isobutyl ketone 2-Aminoethanol, chlorosulfonic acid, nitric acid, ethylenediamine, sulfuric acid Beryllium dihydride, chloroform, oxidants, potassium fcrf-butoxidc Nitromethane Benzenesulfonyl chloride Potassium ferf-butoxide... [Pg.1478]

Formation of the partially saturated nitro derivatives 60 and 61 was reported by a Russian team <1994KGS1129>. The two products were obtained under fairly complicated reaction conditions when aminotetrazole 42 was first treated with potassium amidosulfonate and formaldehyde at pH = 4 followed by addition of nitric acid, methylamine, and acetic anhydride, product 60 was obtained in 24% yield. The same reaction, however, carried out at pH = 6 gave rise to formation of the acetoxy compound 61 in 21% yield. [Pg.917]

A mixture of acetamide (30 g. = 0-5 mole) and bromine (80 g. = 26 c.c.) in a half-litre flask is kept well cooled with water while enough of a solution of 50 g. of potassium hydroxide in 350 c.c. of water is added to change the initially red-brown colour into a pale yellow this requires most of the alkali. The solution is now run from a dropping funnel in an unbroken jet into a solution of 80 g. of potassium hydroxide in 150 c.c. of water, maintained at 70°-75° in a litre flask. The operation lasts for several minutes. Until the reaction mixture becomes colourless (one quarter to half an hour) the temperature is maintained at 70°-75°, and then the methylamine is distilled with steam. An adapter is fixed to the lower end of the condenser and dips 1 cm. below the surface of the liquid in the receiver (100 c.c. of approximately 5 N-hydrochloric acid2). As soon as the liquid which forms in the condenser is no longer alkaline the distillation is discontinued and the contents of the receiver are evaporated to dryness in a porcelain basin on the water bath. The last traces of water are removed by allowing the basin to stand over night in a vacuum desiccator. The dried material is boiled with absolute alcohol, which dissolves the methylamine hydrochloride but not the ammonium chloride with which it is mixed. The clear filtrate obtained when the ammonium chloride is removed by filtration is concentrated to a small volume and the methylamine hydrochloride is allowed to crystallise out in the cold. The salt is filtered with suction, washed with a little alcohol, and dried in a desiccator. Yield 15-20 g. [Pg.152]

Take the total amount of succinaldehyde (obtained from 4 of the above syntheses combined) and without further treatment or purification (this had better be 15.5 g of succindialdehyde) put into an Erlenmeyer flask of 4-5 liters capacity. Add 21.6 g of methylamine hydrochloride, 46.7 g of acetonedicarboxylic acid, and enough water to make a total volume of 2 liters. Adjust the pH to 8-10 by slowly adding a saturated solution of disodium phosphate. The condensate of this reaction (allow to set for about 6 days) is extracted with ether, the ethereal solution is dried over sodium sulphate and distilled, the product coming over at 113° at 25 mm of pressure is collected. Upon cooling, 14 g of tropinone crystallizes in the pure state. Tropinone can also be obtained by oxidation of tropine with potassium dichromate, hut I could not find the specifics for this operation. [Pg.67]

Nitrosomethyl urea. 20 g of methylamine hydrochloride (see below for formula) and 30 g of potassium cyanate are dissolved in 120 cc of water, heated to 70° for 15 min and then to boiling for a few min more. Cool to 0° and add a solution (also cooled to 0°) of 20 g of sodium nitrite in 40 cc of water. 100 cc of 25% sulfuric acid is added, with stirring. The nitrosomethylurea separates, is filtered, washed with ice water, pressed, and dried under vacuo. Crystallize from methanol to get light yellow needles. [Pg.117]

Marchand and co-workers reported a synthetic route to TNAZ (18) involving a novel electrophilic addition of NO+ NO2 across the highly strained C(3)-N bond of 3-(bromomethyl)-l-azabicyclo[1.1.0]butane (21), the latter prepared as a nonisolatable intermediate from the reaction of the bromide salt of tris(bromomethyl)methylamine (20) with aqueous sodium hydroxide under reduced pressure. The product of this reaction, A-nitroso-3-bromomethyl-3-nitroazetidine (22), is formed in 10% yield but is also accompanied by A-nitroso-3-bromomethyl-3-hydroxyazetidine as a by-product. Isolation of (22) from this mixture, followed by treatment with a solution of nitric acid in trifluoroacetic anhydride, leads to nitrolysis of the ferf-butyl group and yields (23). Treatment of (23) with sodium bicarbonate and sodium iodide in DMSO leads to hydrolysis of the bromomethyl group and the formation of (24). The synthesis of TNAZ (18) is completed by deformylation of (24), followed by oxidative nitration, both processes achieved in one pot with an alkaline solution of sodium nitrite, potassium ferricyanide and sodium persulfate. This route to TNAZ gives a low overall yield and is not suitable for large scale manufacture. [Pg.266]

Chlormezanone Chlormezanone, 2-(p-chlorophenyl)-tetrahydro-3-methyl-4H-l,3-tiazin-4-on-1,1-dioxide (5.2.8), is synthesized by joint condensation of mercaptopropionic acid, methylamine, and 4-chlorobenzaldehyde, evidently through the intermediate stage of formation of 4-chlorobenzylidenemethylamine, giving the aminothioacetal 2-(p-chlorophenyl)-tetrahydro-3-methyl-4H-l,3-tiazin-4-one (5.2.7). Oxidation of the sulfur atom using potassium permanganate gives chlormezanone (5.2.8) [62,63]. [Pg.80]

Carbimazole Carbimazole, the ethyl ester of 3-methyl-2-thioimidazolin-l-carboxylic acid (25.2.7), is synthesized by a simultaneons reaction of ethylenacetal of bromoacetaldehyde with methylamine and potassium isocyanate, forming 3-methyl-2-imidazolthione (25.2.6), which is further acylated at the nitrogen atom by ethyl chloroformiate, giving the desired product (25.2.7) [17-19]. [Pg.341]

Some commonly used buffers, such as sodium and potassium phosphate, are incompatible with ELSD, but there are ready alternatives. For example, ammonium acetate has similar buffering properties to potassium phosphate, and ammonium carbonate, ammonium formate, pyridinium acetate, and pyridinium formate are options for different pH ranges. Typical mobile phase modifiers that do not meet the volatility criteria can be replaced by a wide variety of more volatile alternates. For example, phosphoric acid, commonly used as an acid modifier fo control pH and ionization, can be replaced by trifluoroacetic acid other acids that are sufficiently volatile for use with FLSD include, acetic, carbonic, and formic acids. Triethylamine, commonly used as a base modifier, is compatible with FLSD other base modifiers that can be used are ethylamine, methylamine, and ammonium hydroxide [78]. [Pg.227]


See other pages where Potassium methylamine is mentioned: [Pg.314]    [Pg.314]    [Pg.315]    [Pg.339]    [Pg.314]    [Pg.314]    [Pg.315]    [Pg.339]    [Pg.154]    [Pg.109]    [Pg.10]    [Pg.80]    [Pg.81]    [Pg.80]    [Pg.310]    [Pg.130]    [Pg.945]    [Pg.514]    [Pg.945]    [Pg.93]    [Pg.7]    [Pg.634]    [Pg.192]    [Pg.117]    [Pg.271]    [Pg.16]    [Pg.124]    [Pg.50]    [Pg.13]    [Pg.338]    [Pg.235]    [Pg.358]    [Pg.59]    [Pg.250]   
See also in sourсe #XX -- [ Pg.23 , Pg.59 ]




SEARCH



Methylamine

© 2024 chempedia.info