Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium bromide chloride

The solubility of potassium chlorate is depressed by the addition of other potassium salts, or by the addition of other chlorates F. Winteler, and T. Schlosing have measured the solubility of potassium chlorate in potassium chloride soln. and of sodium chlorate in soln. of sodium chloride. In accord with the general rule, the solubility is diminished by the addition of a salt with a common ion. S. Arrhenius measured the solubility of potassium chlorate in aq. soln. of potassium nitrate and C. Blarez in aq. soln. of potassium bromide, chloride, iodide, nitrate, sulphate, oxalate, and hydroxide H. T. Calvert, and J. N. Bronsted in an aq. soln. of the last-named compound. H. T. Calvert also measured the solubility of potassium... [Pg.328]

IR spectra can be recorded on a sample regardless of its physical state—solid liquid gas or dissolved m some solvent The spectrum m Eigure 13 31 was taken on the neat sample meaning the pure liquid A drop or two of hexane was placed between two sodium chloride disks through which the IR beam is passed Solids may be dis solved m a suitable solvent such as carbon tetrachloride or chloroform More commonly though a solid sample is mixed with potassium bromide and the mixture pressed into a thin wafer which is placed m the path of the IR beam... [Pg.559]

Table 2 Hsts examples of compounds with taste and their associated sensory quaUties. Sour taste is primarily produced by the presence of hydrogen ion slightly modified by the types of anions present in the solution, eg, acetic acid is more sour than citric acid at the same pH or molar concentration (43). Saltiness is due to the salts of alkaU metals, the most common of which is sodium chloride. However, salts such as cesium chloride and potassium iodide are bitter potassium bromide has a mixed taste, ie, salty and bitter (44). Thus saltiness, like sourness, is modified by the presence of different anions but is a direct result of a small number of cations. Table 2 Hsts examples of compounds with taste and their associated sensory quaUties. Sour taste is primarily produced by the presence of hydrogen ion slightly modified by the types of anions present in the solution, eg, acetic acid is more sour than citric acid at the same pH or molar concentration (43). Saltiness is due to the salts of alkaU metals, the most common of which is sodium chloride. However, salts such as cesium chloride and potassium iodide are bitter potassium bromide has a mixed taste, ie, salty and bitter (44). Thus saltiness, like sourness, is modified by the presence of different anions but is a direct result of a small number of cations.
Ferrous Sulfdte Titration. For deterrnination of nitric acid in mixed acid or for nitrates that are free from interferences, ferrous sulfate titration, the nitrometer method, and Devarda s method give excellent results. The deterrnination of nitric acid and nitrates in mixed acid is based on the oxidation of ferrous sulfate [7720-78-7] by nitric acid and may be subject to interference by other materials that reduce nitric acid or oxidize ferrous sulfate. Small amounts of sodium chloride, potassium bromide, or potassium iodide may be tolerated without serious interference, as can nitrous acid up to 50% of the total amount of nitric acid present. Strong oxidizing agents, eg, chlorates, iodates, and bromates, interfere by oxidizing the standardized ferrous sulfate. [Pg.47]

Lead is not generally attacked rapidly by salt solutions (especially the salts of the acids to which it is resistant). The action of nitrates and salts such as potassium and sodium chloride may be rapid. In potassium chloride the corrosion rate increases with concentration to a maximum in 0.05m solution, decreases with a higher concentration, and increases again in 2m solution. Only loosely adherent deposits are formed. In potassium bromide adherent deposits are formed, and the corrosion rate increases with concentration. The attack in potassium iodide is slow in concentrations up to 0.1m but in concentrated solutions rapid attack occurs, probably owing to the formation of soluble KPblj. In dilute potassium nitrate solutions (0.001 m and below) the corrosion product is yellow and is probably a mixture of Pb(OH)2 and PbO, which is poorly adherent. At higher concentrations the corrosion product is more adherent and corrosion is somewhat reduced Details of the corrosion behaviour of lead in various solutions of salts are given in Figure 4.16. [Pg.734]

A mixture of potassium chloride and potassium bromide weighing 3.595 g is heated with chlorine, which converts the mixture completely to potassium chloride. The total mass of potassium chloride after the reaction is 3.129 g. What percentage of the original mixture was potassium bromide ... [Pg.73]

Due to the above requirements, typical optically-transparent materials, such as oxides (glass, quartz, alumina, zirconium oxide etc.) and halides (sodium chloride, lithium fluoride, calcium fluoride, potassium bromide, cesium bromide etc.) are usually unsuitable for use with fluoride melts. Therefore, no standard procedure exists at present for the spectral investigation of fluoride melts, and an original apparatus must be created especially for each particular case. [Pg.168]

Weigh out accurately about 0.10 g of analytical grade sodium chloride and about 0.20 g of potassium bromide, dissolve the mixture in about 2.0 mL of water and transfer quantitatively to the top of the column with the aid of 0.3 M sodium nitrate. Pass 0.3 M sodium nitrate through the column at a flow rate of about 1 mL per minute and collect the effluent in 10 mL fractions. Transfer each fraction in turn to a conical flask, dilute with an equal volume of water, add 2 drops of 0.2M potassium chromate solution and titrate with standard 0.02M silver nitrate. [Pg.209]

Discussion. The method is applicable to the determination of a mixture of two salts having the same anion (e.g. sodium chloride and potassium chloride) or the same cation (e.g. potassium chloride and potassium bromide). For example, to determine the amount of sodium and potassium chlorides in a mixture of the two salts, a known weight (Wj g) of the solid mixture is taken, and the total chloride is determined with standard 0.1 M silver nitrate, using Mohr s method or an adsorption indicator. Let w2 g of silver nitrate be required for the complete precipitation of Wj g of the mixture, which contains xg of NaCl and yg of KC1. Then ... [Pg.352]

Now suppose that the determination of potassium chloride and potassium bromide in a mixture is desired. The total halide is determined by Mohr s method or with an adsorption indicator. Let the weight of the mixture be w3 g and w4 g, be the weight of silver nitrate required for complete precipitation,... [Pg.352]

Bromide. A 0.01 M solution of potassium bromide, prepared from the pure salt previously dried at 110°C, is suitable for practice in this determination. The experimental details are similar to those given above for chloride except that no methanol need be added. The titration cell may contain 10.00 mL of the... [Pg.543]

Traditional infrared spectrophotometers were constructed with mono-chromation being carried out using sodium chloride or potassium bromide prisms, but these had the disadvantage that the prisms are hygroscopic and the middle-infrared region normally necessitated the use of two different prisms in order to obtain adequate dispersion over the whole range. [Pg.744]

Reaction carried out using sodium chloride or potassium bromide as catalysts. [Pg.256]

Caicium halides are relatively stable there is the possibility of a violent reaction in the presence of a more electropositive alkaline metal eg detonation on impact of a mixture of calcium bromide and potassium. Calcium chloride has a very high enthalpy of solution in water. When dissolved in large quantities in hot water this causes the solution to boil vigorously, creating emissions. [Pg.197]

A salt derived from a hydracid is named according to the nonmetal present in the parent acid, and the salt will end in - ide . The metallic part of the salt is named first. The prefix hydro is dropped and suffix - ic (of the acid) is changed to - ide . HC1 HBr HCN H2S Sodium chloride (NaCl) Magnesium chloride (MgCl2) Potassium bromide (KBr) Zinc bromide (ZnBr2) Sodium cyanide (NaCN) Potassium sulfide (K2S)... [Pg.595]

Spectroscopic Analysis. Infrared (IR) spectroscopic analysis was performed on a Beckman Microlab 620 MX computing spectrometer. Samples were cast on a sodium chloride pellet or made into a pellet with potassium bromide. and 13C NMR spectra were obtained using a JEOL HNM-FX 270 MHz Fourier transform NMR spectrometer. Samples were dissolved in deuterium chloroform and chemical shifts were referenced to an internal standard of tetramethylsilane. [Pg.105]

Fluoride ion is effective in promoting the reduction of aldehydes by organosil-icon hydrides (Eq. 161). The source of fluoride ion is important to the efficiency of reduction. Triethylsilane reduces benzaldehyde to triethylbenzyloxysilane in 36% yield within 10-12 hours in anhydrous acetonitrile solvent at room temperature when tetraethylammonium fluoride (TEAF) is used as the fluoride ion source and in 96% yield when cesium fluoride is used.83 The carbonyl functions of both p-anisaldehyde and cinnamaldehyde are reduced under similar conditions. Potassium bromide or chloride, or tetramethylammonium bromide or chloride are not effective at promoting similar behavior under these reaction conditions.83 Moderate yields of alcohols are obtained by the KF-catalyzed PMHS, (EtO SiH, or Me(EtO)2SiH reduction of aldehydes.80,83,79... [Pg.59]

Pure potassium bromide, KBr, which adopts the sodium chloride structure, has the fraction of empty cation sites due to Schottky defects, ncv/Nc, equal to 9.159xl0-21 at 20°C. (a) Estimate the enthalpy of formation of a Schottky defect, Ahs. (b) Calculate the number of anion vacancies per cubic meter of KBr at 730°C (just below the melting point of KBr). The unit cell of KBr is cubic with edge length a = 0.6600 nm and contains four formula units of KBr. [Pg.80]

Table IV shows that potassium and sodium salts have been studied much more extensively than ammonium salts. However, we found that, for any one gas, differences in the coefficient between potassium and ammonium salts of the same anion and between sodium and ammonium salts of the same anion are nearly constant. For gases other than carbon dioxide, we have used data on bromides, chlorides, nitrates, and sulfates from a single investigator to obtain average differences (Table V). For carbon dioxide, such data were not available, and we used averages of results on chlorides, nitrates, and sulfates from different investigators. Table IV shows that potassium and sodium salts have been studied much more extensively than ammonium salts. However, we found that, for any one gas, differences in the coefficient between potassium and ammonium salts of the same anion and between sodium and ammonium salts of the same anion are nearly constant. For gases other than carbon dioxide, we have used data on bromides, chlorides, nitrates, and sulfates from a single investigator to obtain average differences (Table V). For carbon dioxide, such data were not available, and we used averages of results on chlorides, nitrates, and sulfates from different investigators.
Infrared detectors are similar in construction to those used in UV detection. The main difference is that the sample cell windows are constructed of sodium chloride, potassium bromide, or calcium fluoride. A limitation of this type of detector is caused by the low transparency of many useful solvents (Skoog et al., 1998). Recent changes to interface systems that use spraying to induce rapid evaporation of the solvent provide good sensitivity and enhanced spectral quality (LaCourse, 2000). [Pg.22]

Procedure To the sample which contains 20-300 /xg of pertechnetate in 5-20 ml of solution, are added potassium perchlorate solution (2 ml, 1 mg KCIO per ml) and enough NaCl to make the solution approximately 1 M. The solution is heated and neutralized with ammonia. Pertechnetate is precipitated with aqueous 5 % tetraphenylarsonium chloride reagent. The precipitate is filtered, washed and dried, and a 2-mg portion is mixed with potassium bromide (300 mg). The mixture is pressed to form a clear disc by the usual technique. The infrared spectrum is recorded between 10 and 12 /x. The peak absorption is measured at 11.09 /X by the base-line technique. [Pg.140]


See other pages where Potassium bromide chloride is mentioned: [Pg.1371]    [Pg.192]    [Pg.55]    [Pg.167]    [Pg.174]    [Pg.262]    [Pg.353]    [Pg.749]    [Pg.256]    [Pg.164]    [Pg.340]    [Pg.1726]    [Pg.404]    [Pg.404]    [Pg.404]    [Pg.50]    [Pg.392]    [Pg.356]    [Pg.298]    [Pg.408]    [Pg.223]    [Pg.23]    [Pg.77]    [Pg.273]    [Pg.113]    [Pg.16]   
See also in sourсe #XX -- [ Pg.229 , Pg.284 ]




SEARCH



Potassium bromid

Potassium chlorid

© 2024 chempedia.info