Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Positronium annihilation lifetime spectroscopy PALS

The progress in the determination of porosity of various types of materials has arisen over the past ten years from advances in application of new spectroscopy techniques. In the present paper the application of small angle X-ray scattering (SAXS), positronium annihilation lifetime spectroscopy (PALS) and low temperature nitrogen adsorption methods to the characterization of mesoporosity is reviewed using different types of silica gels with chemically modified surface. The results from the three methods are compared and discussed. [Pg.655]

Free volume or hole volume is ostensibly measured experimentally by positronium-annihilation-lifetime spectroscopy (PALS). In organic glasses, including amorphous polymers, the ortho-positronium (o-Ps) bound state of a positron has a strong tendency to localize in heterogeneous regions of low electron density. In vacuo, an... [Pg.97]

Positron annihilation lifetime spectroscopy (PALS) provides a method for studying changes in free volume and defect concentration in polymers and other materials [1,2]. A positron can either annihilate as a free positron with an electron in the material or capture an electron from the material and form a bound state, called a positronium atom. Pnra-positroniums (p-Ps), in which the spins of the positron and the electron are anti-parallel, have a mean lifetime of 0.125 ns. Ortho-positroniums (o-Ps), in which the spins of the two particles are parallel, have a mean lifteime of 142 ns in vacuum. In polymers find other condensed matter, the lifetime of o-Ps is shortened to 1-5 ns because of pick-off of the positron by electrons of antiparallel spin in the surrounding medium. [Pg.365]

The aim of this chapter is to introduce the reader to the application of positron annihilation techniques to polymers. An extensive review of the large volume of publications related to positron studies in polymers will not be presented. Rather it is intented to introduce the reader to the theory and techniques used in polymer studies and indicate the types of information that can be obtained about different polymer systems. The main focus of this chapter will be on the use of positron annihilation lifetime spectroscopy (PAL) in polymer studies. Chapter 11 discusses the use of monoenergetic slow positron beams used to study polymers surfaces. One of the interesting new developments in the application of positron annihilation techniques in polymers is the positron age-momentum correlation technique (AMOC). This technique promises to shed new light on the mechanisms of positronium formation and annihilation in polymer systems. A more detailed discussion of this technique can be found elswhere in this text. [Pg.253]

Pore dimensions can be determined also by positron annihilation lifetime spectroscopy (PALS). Positron in a solid can create a bound structure with an electron, called positronium (Ps). Its triplet state (ortho-Ps) has an intrinsic lifetime in vacuum 142 ns, but when trapped in a free volume, like a pore, it lives shorter. The o-Ps lifetime is... [Pg.660]

Reaction of a positron with an electron gives a metastable positronium (Ps) particle, which may have antiparallel spins (para-positronium, p-Ps) or parallel spins (ort/jo-positronium, o-Ps). Within a polymer, the longer lifetimes of o-Ps may be related to the size, concentration and distribution of free volume elements. There have been a number of studies of PIM-1 by positron annihilation lifetime spectroscopy (PALS) [33-36]. [Pg.39]

Positron annihilation lifetime spectroscopy (PALS) studies the lifetime spectrum of ortho-positrons after being injected into the sample [3,4]. This lifetime depends on the probability of the ortho-positronium (o-Ps) particle (a hydrogen-like bound state formed by a positron-electron pair) to be quenched and annihilate. This probabihty is higher in condensed matter than in vacuum. Of all the probe methods PALS is nowadays probably the most versatile one and the most widely used. The o-Ps particle is the smallest probe available and can thus detect the smallest free volume elements furthermore, the method furnishes information on the average free volume size and on the FV size distribution. [Pg.61]

Positron Annihilation Lifetime Spectroscopy (PALS) provides a measure of free volume holes or voids, free volume, and free volume distribution, at an atomic scale. The technique exploits the fact that the positively charged positron (e" ), the antiparticle to the electron, preferentially samples regions of low positive charge density. When injected in a polymer matrix, thermalized positrons can combine with an electron to form a bound state, known as positronium (Ps). This species can only exist in a void and it rapidly annihilates on contact with the electron cloud of a molecule. For polymer studies using PALS, it is ortho-positronium (oPs, a triplet state) which is of interest. The oPs spin exchanges with electrons of opposite spin on the walls of the cavity and it is annihilated. Thus, the oPs lifetime, 13, gives a measure of the mean free volume cavity radius, whereas the relative intensity of... [Pg.1385]

Positron annihilation lifetime spectroscopy (PALS) is normally applied to determine the free volume properties of a cured thermoset. The theory and methodology of PALS [27, 28] is briefly described next. The positron, an antiparticle of an electron, is used to investigate the free volume between polymer chains. The birth of the positron can be detected by the release of a gamma ray of characteristic energy. This occurs approximately 3 ps after positron emission when the Na decays to Ne. Once inside the polymer material, the positron forms one of the two possible types of positroniums, an ort o-positronium or a p(3 ra-positronium, obtained by pairing with an electron abstracted from the polymer environment. The decay spectra are obtained by the death event of the positron, pi ra-positronium or ort o-positronium species. By appropriate curve fitting, the lifetimes of the various species and their intensity can be determined. The lifetime of an ort o-positronium (Xj) and intensity (I3) have been found to be indicative of the free volume in a polymer system because this is where the relevant species become localised. X3 is related to the size of the free volume sites and I3 to their number concentration. The free volume properties of difunctional and multifunctional epoxies are shown in Table 3.5. The data clearly... [Pg.172]

Positronium Annihilation Lifetime Spectroscopy. Positron annihilation lifetime spectroscopy (pals) is primarily viewed as techniqne to parameterize the imoccnpied volnme, or so-called free volume, of amorphous polymers. In vacuo, the ortho-positronium (o-Ps) has a well-defined lifetime T3 of 142 ns. This lifetime is cut short when o-Ps is embedded in condensed matter via the pick-oflT mechanism whereby o-Ps prematurely annihilates with one of the surroimding boimd electrons. The quantum mechanical probability of o-Ps pick-off annihilation depends on the electron density of the medium, or the size of the heterogeneity. Typically the heterogeneity is assiuned to be a spherical cavity (164,165) so that T3 can be easily related to an average radius R (Ro = R -i- AR) of the nanopore ... [Pg.527]

For investigation of pores in solids, the positron annihilation lifetime spectroscopy (PALS) uses a very small probe - the positronium atom, which is a boxmd state of positron and electron. The lifetime of the positronium triplet state (ortho-positronium, o-Ps) in the matter is... [Pg.472]

The positronium annihilation lifetime spectroscopy was successfiilly applied to the study of pore structure of the as-synthesized sample of MCM-41. The PALS technique can supply information about imperfections in the template structure as well as silica walls of MCM-41. The interior of cylindrical micelles encaged in the silica skeleton exhibits the presence of some kind of defects which disappear when pressure of argon increases. Howeva-, small voids present in the walls of silica network are resistant to compression and their dimensions are independent of pressure. Under mechanical pressure one can observe total destruction of interparticle pores at about 140 MPa. However, small voids in the sample are present up to 450 MPa. Temperature treatment leads to quite different effects than those observed for pressure experiment. [Pg.478]

In recent years, positron annihilation lifetime (PAL) spectroscopy has been demonstrated to be a special sub-nanometer probe to determine the free-volume hole size, fraction and distribution in a variety of polymers (4-9). In this technique, measured lifetimes and relative intensities of the positron and positronium, Ps (a bound atom which consists of an electron and a positron), are related to the size and fraction of sub-nanometer holes in polymeric materials. Because of the positive-charge nature, the positron and Ps are repelled by the ion core of polymer molecules and trapped in open spaces, such as holes, free volumes, and voids. The observed... [Pg.355]

The free volume (FV) in polymer systems is of great interest because the size and concentration of its elements (holes) affect numerous transport and other physicochemical properties of polymers. Positron annihilation lifetime (PAL) spectroscopy is now one of the most efficient approaches for investigations of FV. The foundations of this method for probing polymers were based in particular on Walker-Brandt-Berko s free volume model (7). According to this model, Positronium, Ps, (a bound atomic system, which consists of an electron and the positron) tends to be localized or trapped before its annihilation in FV or, in other words, in areas with reduced electron density. Accordingly, annihilation characteristics (lifetimes and intensities of longer lifetime components of annihilation radiation) provide information regarding the concentration and sizes of FV elements. (2-5)... [Pg.102]

Positron Annihilation Spectroscopy (PALS) can investigate the free volume existing between polymer chains. The lifetime of particles (positrons) injected into a sample can thus provide information on the void structure existing in polymers and polymer blends. For immiscible polymers, free volume existing at the interface due to poor adhesion can be detected by PALS. In miscible polymers, densification due to favorable interactions may be capable of determination. This technique involves the injection of positrons into a polymeric system from a radioisotope capable of emitting positrons, such as Na. The positrons (positively charged electrons) combine with electrons to annihilate or to form a bound state called a positronium (Ps). If the spins of the positron and electron are antiparaUel, para-positroniums (pPS) with a lifetime of 0.125 ns are formed. If the spins of the positron and electrons are parallel, an orthopositronium (oPs) is formed with a lifetime of 1-5 ns. The oPs hfetime, Ts, is related to the free volume cavity in which the oPs is formed [388,389]. [Pg.310]


See other pages where Positronium annihilation lifetime spectroscopy PALS is mentioned: [Pg.431]    [Pg.432]    [Pg.431]    [Pg.432]    [Pg.269]    [Pg.13]    [Pg.255]    [Pg.368]    [Pg.394]    [Pg.20]    [Pg.1389]    [Pg.96]    [Pg.1211]    [Pg.8653]    [Pg.1346]    [Pg.35]    [Pg.308]    [Pg.255]   
See also in sourсe #XX -- [ Pg.97 , Pg.126 ]




SEARCH



Annihilate

Annihilation

Annihilation lifetime

Annihilation positronium

Lifetime spectroscopy

PAL

Positronium annihilation lifetime

Positronium annihilation lifetime spectroscopy

Positronium lifetime spectroscopy

Positronium lifetimes

© 2024 chempedia.info