Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Positive displacement flow pressurization

Fig. 6.37 Schematic representation of four geometrical configurations utilizing external mechanical pressurization giving rise to positive displacement flow, (a) Axially moving plunger in a cylinder, (b) Squeezing disks, (c) Intermeshing gear pump, (d) Counterrotating intermeshing twin screws. Fig. 6.37 Schematic representation of four geometrical configurations utilizing external mechanical pressurization giving rise to positive displacement flow, (a) Axially moving plunger in a cylinder, (b) Squeezing disks, (c) Intermeshing gear pump, (d) Counterrotating intermeshing twin screws.
To inject the polymer melt into the mold, the melt must be pressurized. This is achieved by the forward thrust of the screw (a) or the piston (b), both of which act as rams. Hence we have static mechanical pressurization, as discussed in Section 6.7, which results in positive displacement flow. [Pg.755]

Flow meters have traditionally been classified as either electrical or mechanical depending on the nature of the output signal, power requirements, or both. However, improvement in electrical transducer technology has blurred the distinction between these categories. Many flow meters previously classified as mechanical are now used with electrical transducers. Some common examples are the electrical shaft encoders on positive displacement meters, the electrical (strain) sensing of differential pressure, and the ultrasonic sensing of weir or flume levels. [Pg.57]

The ease with which the separated products leave the bowl determines the richness of the fat. Fluid whole milk enters the separator under pressure from a positive displacement pump or centrifugal pump with flow control (Fig. 1). The fat (cream) is separated and moves toward the center of the bowl, while the skimmed milk passes to the outer space. There are two spouts or oudets, one for cream and one for skimmed milk. Cream leaves the center of the bowl with the percentage of fat ( 30 40%) controlled by the adjustment of a valve, called a cream or skim milk screw, that controls the flow of the product leaving the field of centrifugal force and thus affects the separation. [Pg.353]

Positive Displacement Pumps. Positive displacement pumps foUow HI convention (see Fig. 1). As a rule, these pumps work against significantly higher pressures and lower flows than do kinetic, particularly centrifugal, pumps. Positive displacement pumps also operate at lower rotational speeds. There are many types of positive displacement pumps, for which designs are constantly being developed. Some of these are discussed herein. [Pg.295]

Flow, defined as volume per unit of time at specified temperature and pressure conditions, is generally measured By positive-displacement or rate meters. The term positive-displacement meter apphes to a device in which the flow is divided into isolated measured volumes when the number of fillings of these volumes is counted in some man-... [Pg.762]

Whereas the total dynamic head developed by a centrifugal, mixed-flow, or axial-flow pump is uniquely determined for any given flow by the speed at whicdi it rotates, positive-displacement pumps and those which approach positive displacement will ideally produce whatever head is impressed upon them by the system restrictions to flow. Actually with slippage neglecTed, the maximum head attainable is determined by the power available in the drive and the strength of the pump parts. An automatic relief valve set to open at a safe pressure... [Pg.909]

To be able to decide which type of compressor would best fit the job, we should first divide the compressors into three main categories positive displacement, centrifugaf and axial flow In general terms, positive displacement compressors are used for high pressure and low flow characteristics centrifugal compressors are used for medium to high pressure dehvery and medium flow and axial flow compressors are low pressure and high flow... [Pg.923]

The two principal elements of evaporator control are evaporation rate a.ndproduct concentration. Evaporation rate in single- and multiple-effect evaporators is usually achieved by steam-flow control. Conventional-control instrumentation is used (see Sec. 22), with the added precaution that pressure drop across meter and control valve, which reduces temperature difference available for heat transfer, not be excessive when maximum capacity is desired. Capacity control of thermocompression evaporators depends on the type of compressor positive-displacement compressors can utilize speed control or variations in operating pressure level. Centrifugal machines normally utihze adjustable inlet-guide vanes. Steam jets may have an adjustable spindle in the high-pressure orifice or be arranged as multiple jets that can individually be cut out of the system. [Pg.1148]

Piston, or positive displacement pumps, are well known and much used. Centrifugal pumps are not as well understood. Consequently, piston pump performance is sometimes expected from centrifugal blowers. The main difference is that positive displacement or piston pumps generate flow, whereas centrifugal pumps produce pressure. With a piston pump, the pressure will increase to the level needed to maintain the flow set by the piston volume and stroking speed. In contrast, centrifugal pumps produce pressure the flow will increase until the pressure drop, produced by the flow, matches the pressure produced by the pump. [Pg.62]

For positive displacement pumps, a bypass-type control valve should be furnished to set the primary lube system pressure. The valve should be able to maintain system pressure during pump startup and pump transfers, which includes relieving the capacity of one pump, while both are running. The valve should provide stable, constant pressure during these transients. Flow turndown of 8 to 1 is not unusual. Multiple valves in parallel should be used if a single valve is not suitable. The valve should be sized to operate between 10 and 90% of the flow coefficient (Cv). Additional pressure control valves should be furnished as required to pro ide any of the intermediate pressure levels. [Pg.313]

Flow Rate. The values for volumetric or mass flow rate measurement are often determined by measuring pressure difference across an orifice, nozzle, or venturi tube. Other flow measurement techniques include positive displacement meters, turbine flowmeters, and airflow-measuring hoods. [Pg.301]

The dump valve is a very important feature of the positive displacement motor. The positive displacement motor does not permit fluid to flow through the motor unless the motor is rotating. Therefore, a dump valve at the top of the motor allows drilling fluid to be circulated to the annulus even if the motor is not rotating. Most dump valve designs allow the fluid to circulate to the annulus when the pressure is below a certain threshold, say below 50 psi or so. Only when the surface pump is operated does the valve close to force all fluid through the motor. [Pg.883]

Rather moderate flow rates and pressures are required to operate the positive displacement motor. Thus, most surface pump systems can be used to operate these downhole motors. [Pg.885]

Most hydraulic systems use a positive displacement pump to generate energy within the system. Unless the pressure is controlled, these pumps will generate excessive pressure that can cause catastrophic failure of system component. A relief valve is always installed downstream of the hydraulic pump to prevent excessive pressure and to provide a positive relief should a problem develop within the system. The relief valve is designed to open at a preset system pressure. When the valve opens, it diverts flow to the receiver tank or reservoir. [Pg.586]


See other pages where Positive displacement flow pressurization is mentioned: [Pg.58]    [Pg.162]    [Pg.236]    [Pg.164]    [Pg.240]    [Pg.58]    [Pg.66]    [Pg.417]    [Pg.270]    [Pg.501]    [Pg.99]    [Pg.378]    [Pg.1110]    [Pg.2]    [Pg.173]    [Pg.60]    [Pg.62]    [Pg.64]    [Pg.26]    [Pg.310]    [Pg.471]    [Pg.501]    [Pg.616]    [Pg.145]    [Pg.332]    [Pg.466]    [Pg.459]    [Pg.882]    [Pg.885]    [Pg.895]    [Pg.488]    [Pg.1345]    [Pg.55]    [Pg.466]    [Pg.319]   
See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Positive displacement

Positive displacement flow

Pressure positive

© 2024 chempedia.info