Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porous desorption mechanism

The majority of physisorption isotherms (Fig. 1.14 Type I-VI) and hysteresis loops (Fig. 1.14 H1-H4) are classified by lUPAC [21]. Reversible Type 1 isotherms are given by microporous (see below) solids having relatively small external surface areas (e.g. activated carbon or zeolites). The sharp and steep initial rise is associated with capillary condensation in micropores which follow a different mechanism compared with mesopores. Reversible Type II isotherms are typical for non-porous or macroporous (see below) materials and represent unrestricted monolayer-multilayer adsorption. Point B indicates the stage at which multilayer adsorption starts and lies at the beginning of the almost linear middle section. Reversible Type III isotherms are not very common. They have an indistinct point B, since the adsorbent-adsorbate interactions are weak. An example for such a system is nitrogen on polyethylene. Type IV isotherms are very common and show characteristic hysteresis loops which arise from different adsorption and desorption mechanisms in mesopores (see below). Type V and Type VI isotherms are uncommon, and their interpretation is difficult. A Type VI isotherm can arise with stepwise multilayer adsorption on a uniform nonporous surface. [Pg.19]

With hysteresis loops of Type HI, the two branches are almost vertical and nearly parallel. Such loops are often associated with porous materials which are known to have very narrow pore size distributions or agglomerates of approximately uniform spheres in fairly regular array. More common are loops of Type H2, where the pore size distribution and shape are not well defined. This is attributed to the difference in adsorption and desorption mechanisms occurring in ink-bottle pores, and network effects. The Type H3 hysteresis loop does not show any limiting adsorption at high relative pressures and is observed in aggregates and macroporous materials. Loops of Type H4 are often associated with narrow... [Pg.19]

As discussed above, hysteresis loops can appear in sorption isotherms as result of different adsorption and desorption mechanisms arising in single pores. A porous material is usually built up of interconnected pores of irregular size and geometry. Even if the adsorption mechanism is reversible, hysteresis can still occur because of network effects which are now widely accepted as being a percolation problem [21, 81] associated with specific pore connectivities. Percolation theory for the description of connectivity-related phenomena was first introduced by Broad-bent et al. [88]. Following this approach, Seaton [89] has proposed a method for the determination of connectivity parameters from nitrogen sorption measurements. [Pg.23]

The synthesis of phenolic-formaldehyde and melamine-formaldehyde resins in the presence of fumed silica allows obtaining porous organic materials with a differentiated porous structure and surface properties. The pore characteristics of the studied resins in dry state were determined from nitrogen adsorption isotherms. The differences in surface character of the synthesized polymers were estimated satisfactorily by XPS spectra showing the presence of various functional groups. The adsorption/desorption mechanism of water and benzene on the investigated porous polymers was different due to differentiated hydrophobicity of the bulk material. [Pg.497]

Table 1.1 Thermal stability properties and desorption mechanisms of Si/organic monolayers arranged as a function of linkage and molecular structure. The desorption temperature is estimated as that corresponding to the removal of 50% of a given monolayer. The substrate designates atomically flat (111) and (100) Si surfaces or porous silicon (PSi). Table 1.1 Thermal stability properties and desorption mechanisms of Si/organic monolayers arranged as a function of linkage and molecular structure. The desorption temperature is estimated as that corresponding to the removal of 50% of a given monolayer. The substrate designates atomically flat (111) and (100) Si surfaces or porous silicon (PSi).
Adhesive force, non-Brownian particles, 549 Admicelle formation, 277 Adsorption flow rate, 514 mechanism, 646-647 on reservoir rocks, 224 patterns, on kaolinite, 231 process, kinetics, 487 reactions, nonporous surfaces, 646 surface area of sand, 251 surfactant on porous media, 510 Adsorption-desorption equilibria, dynamic, 279-239 Adsorption plateau, calcium concentration, 229... [Pg.679]

Surface diffusion is yet another mechanism that is often invoked to explain mass transport in porous catalysts. An adsorbed species may be transported either by desorption into the gas phase or by migration to an adjacent site on the surface. It is this latter phenomenon that is referred to as surface diffusion. This phenomenon is poorly understood and the rate of mass... [Pg.434]

However, desorption follows the meniscus receding mechanism, and vaporization occurs only in pores connected to the vapor phase. As a result, pore C remains fiUed until pore B is emptied, and the sequence of evaporation is in fact B and C together followed by A. This mechanism can lead to very steep Type H2 hysteresis loops. Indeed, a common diagnostic feature of many hysteresis loops is that the steep region leading to the lower closure point occurs at nearly the same relative pressure. It is almost independent of the porous adsorbent, but mainly dependent on the adsorptive. In case of nitrogen this happens at a relative pressure p/po 0.4 [21]. [Pg.23]

Abstract. Nanocarbon materials and method of their production, developed by TMSpetsmash Ltd. (Kyiv, Ukraine), are reviewed. Multiwall carbon nanotubes with surface area 200-500 m2/g are produced in industrial scale with use of CVD method. Ethylene is used as a source of carbon and Fe-Mo-Al- mixed oxides as catalysts. Fumed silica is used as a pseudo-liquid diluent in order to decrease aggregation of nanotubes and bulk density of the products. Porous carbon nanofibers with surface area near 300-500 m2/g are produced from acetylene with use of (Fe, Co, Sn)/C/Al203-Si02 catalysts prepared mechanochemically. High surface area microporous nanocarbon materials were prepared by activation of carbon nanofibers. Effective surface area of these nanomaterials reaches 4000-6000 m2/g (by argon desorption method). Such materials are prospective for electrochemical applications. Methods of catalysts synthesis for CVD of nanocarbon materials and mechanisms of catalytic CVD are discussed. [Pg.529]

When modeling phenomena within porous catalyst particles, one has to describe a number of simultaneous processes (i) multicomponent diffusion of reactants into and out of the pores of the catalyst support, (ii) adsorption of reactants on and desorption of products from catalytic/support surfaces, and (iii) catalytic reaction. A fundamental understanding of catalytic reactions, i.e., cleavage and formation of chemical bonds, can only be achieved with the aid of quantum mechanics and statistical physics. An important subproblem is the description of the porous structure of the support and its optimization with respect to minimum diffusion resistances leading to a higher catalyst performance. Another important subproblem is the nanoscale description of the nature of surfaces, surface phase transitions, and change of the bonds of adsorbed species. [Pg.170]

As explained in Chapter 1, the shape of an adsorption isotherm provides useful preliminary information concerning the mechanisms of physisorption, and hence the nature of the adsorbent. For example, a reversible Type II adsorption-desorption isotherm is generally associated with the formation of an adsorbed layer which progressively thickens as the equilibrium pressure is increased up to the saturation pressure this form of monolayer-multilayer physisorption is observed on an open and stable surface of a non-porous adsorbent. [Pg.93]

This study consists in verifying the coherence of a few commonly used analysis methods of nitrogen adsorption-desorption isotherms. These methods were tested on model samples obtained by mechanically mixing two micro- and mesoporous solids respectively with known mass proportions. Although the individual analysis methods may lead to discrepancies in the interpretation of the isotherms, their systematic comparison allows drawing a coherent picture of the porous texture. [Pg.419]

The analysis of nitrogen adsorption-desorption isotherms is one of the most commonly used methods to assess the texture of porous materials. It has given rise to numerous theoretical studies and many mathematical models have been developed to analyze the results. These models establish a relationship between pressure and pore size on the basis of the real physicochemical adsorption mechanisms. However, the user is often bewildered by the diversity of the models, the disparity of basic hypothesis, the difficulty checking them and the apparent incoherence of the results. [Pg.419]

The aim of this work is to test and to compare the performances of various nitrogen adsorption-desorption isotherms analysis methods. These models were applied to model samples obtained by mechanically mixing two micro- and mesoporous solids respectively in perfectly known proportions. The relevant morphological characteristics of the porous texture of the mixtures, such as the specific surface and volume, are physically additive. A criterion that allows determining the reliability of the analysis methods tested is thus to check the linearity of the relation between a given parameter and the weight percentage of the pure solids. [Pg.419]

Capillary condensation provides the possibility of blocking pores of a certain size with the liquid condensate simply by adjusting the vapor pressure. A permporometry lest usually begins at a relative pressure of 1, thus all pores filled and no unhindered gas transport. As the pressure is reduced, pores with a size corresponding to the vapor pressure applied become emptied and available for gas transport. The gas flow through the open mesopores is dominated by Knudsen diffusion as will be discussed in Section 4.3.2 under Transport Mechanisms of Porous Membranes. The flow rate of the noncondensable gas is measured as a function of the relative pressure of the vapor. Thus it is possible to express the membrane permeability as a function of the pore radius and construct the size distribution of the active pores. Although the adsorption procedure can be used instead of the above desorption procedure, the equilibrium of the adsorption process is not as easy to attain and therefore is not preferred. [Pg.109]

When a surfactant-water or surfactant-brine mixture is carefully contacted with oil in the absence of flow, bulk diffusion and, in some cases, adsorption-desorption or phase transformation kinetics dictate the way in which the equilibrium state is approached and the time required to reach it. Nonequilibrium behavior in such systems is of interest in connection with certain enhanced oil recovery processes where surfactant-brine mixtures are injected into underground formations to diplace globules of oil trapped in the porous rock structure. Indications exist that recovery efficiency can be affected by the extent of equilibration between phases and by the type of nonequilibrium phenomena which occur (J ). In detergency also, the rate and manner of oily soil removal by solubilization and "complexing" or "emulsification" mechanisms are controlled by diffusion and phase transformation kinetics (2-2). [Pg.193]

Adsorption of molecules proceeds by successive steps (1) penetration inside a particle (2) diffusion inside the particle (3) adsorption (4) desorption and (5) diffusion out of the particle. In general, the rates of adsorption and desorption in porous adsorbents are controlled by the rate of transport within the pore network rather than by the intrinsic kinetics of sorption at the surface of the adsorbent. Pore diffusion may take place through several different mechanisms that usually coexist. The rates of these mechanisms depend on the pore size, the pore tortuosity and constriction, the cormectivity of the pore network, the solute concentration, and other conditions. Four main, distinct mechanisms have been identified molecular diffusion, Knudsen diffusion, Poiseiulle flow, and surface diffusion. The effective pore diffusivity measured experimentally often includes contributions for more than one mechanism. It is often difficult to predict accurately the effective diffusivity since it depends so strongly on the details of the pore structure. [Pg.250]

However, the two-sink model as well as other existing adsorption (sink) models do not seem to be able to describe the strong asymmetry between the adsorption/desorption of VOCs on/from indoor surface materials (the desorption process is much slower than the adsorption process). Diffusion combined with internal adsorption is assumed to be capable of explaining the observed asymmetry. Diffusion mechanisms have been considered to play a role in interactions of VOCs with indoor sinks. Dunn and Chen (1993) proposed and tested three unified, diffusion-limited mathematical models to account for such interactions. The phrase unified relates to the ability of the model to predict both the ad/absorption and desorption phases. This is a very important aspect of modeling test chamber kinetics because in actual applications of chamber studies to indoor air quality (lAQ), we will never be able to predict when we will be in an accumulation or decay phase, so that the same model must apply to both. Development of such models is underway by different research groups. An excellent reference, in which the theoretical bases of most of the recently developed sorption models are reviewed, is the paper by Axley and Lorenzetti (1993). The authors proposed four generic families of models formulated as mass transport modules that can be combined with existing lAQ models. These models include processes such as equilibrium adsorption, boundary layer diffusion, porous adsorbent diffusion transport, and conveetion-diffusion transport. In their paper, the authors present applications of these models and propose criteria for selection of models that are based on the boundary layer/conduction heat transfer problem. [Pg.165]


See other pages where Porous desorption mechanism is mentioned: [Pg.335]    [Pg.270]    [Pg.944]    [Pg.251]    [Pg.398]    [Pg.391]    [Pg.270]    [Pg.235]    [Pg.145]    [Pg.393]    [Pg.276]    [Pg.481]    [Pg.535]    [Pg.14]    [Pg.185]    [Pg.183]    [Pg.129]    [Pg.4050]    [Pg.4053]    [Pg.23]    [Pg.28]    [Pg.543]    [Pg.544]    [Pg.15]    [Pg.178]    [Pg.270]    [Pg.796]    [Pg.2938]    [Pg.390]    [Pg.285]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



Desorption mechanism

Desorption mechanism, porous silicon

© 2024 chempedia.info