Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyvinyl activity

Addition polymers, which are also known as chain growth polymers, make up the bulk of polymers that we encounter in everyday life. This class includes polyethylene, polypropylene, polystyrene, and polyvinyl chloride. Addition polymers are created by the sequential addition of monomers to an active site, as shown schematically in Fig. 1.7 for polyethylene. In this example, an unpaired electron, which forms the active site at the growing end of the chain, attacks the double bond of an adjacent ethylene monomer. The ethylene unit is added to the end of the chain and a free radical is regenerated. Under the right conditions, chain extension will proceed via hundreds of such steps until the supply of monomers is exhausted, the free radical is transferred to another chain, or the active site is quenched. The products of addition polymerization can have a wide range of molecular weights, the distribution of which depends on the relative rates of chain grcnvth, chain transfer, and chain termination. [Pg.23]

Secondary alcohol oxidases catalyze the oxidation of secondary alcohols to ketones using molecular oxygen as oxidant. A secondary alcohol oxidase from polyvinyl alcohol-degrading bacterium Pseudomonas vesicularis var. povalolyticus PH exhibited activity toward several... [Pg.159]

Several metallophthalocyanines have been reported to be active toward the electroreduction of C02 in aqueous electrolyte especially when immobilized on an electrode surface.125-127 CoPc and, to a lesser extent, NiPc appear to be the most active phthalocyanine complexes in this respect. Several techniques have been used for their immobilization.128,129 In a typical experiment, controlled potential electrolysis conducted with such modified electrodes at —1.0 vs. SCE (pH 5) leads to CO as the major reduction product (rj = 60%) besides H2, although another study indicates that HCOO is mainly obtained.129 It has been more recently shown that the reduction selectivity is improved when the CoPc is incorporated in a polyvinyl pyridine membrane (ratio of CO to H2 around 6 at pH 5). This was ascribed to the nature of the membrane which is coordinative and weakly basic. The microenvironment around CoPc provided by partially protonated pyridine species was suggested to be important.130,131 The mechanism of C02 reduction on CoPc is thought to involve the initial formation of a hydride derivative followed by its reduction associated with the insertion of C02.128... [Pg.482]

In AChE-based biosensors acetylthiocholine is commonly used as a substrate. The thiocholine produced during the catalytic reaction can be monitored using spectromet-ric, amperometric [44] (Fig. 2.2) or potentiometric methods. The enzyme activity is indirectly proportional to the pesticide concentration. La Rosa et al. [45] used 4-ami-nophenyl acetate as the enzyme substrate for a cholinesterase sensor for pesticide determination. This system allowed the determination of esterase activities via oxidation of the enzymatic product 4-aminophenol rather than the typical thiocholine. Sulfonylureas are reversible inhibitors of acetolactate synthase (ALS). By taking advantage of this inhibition mechanism ALS has been entrapped in photo cured polymer of polyvinyl alcohol bearing styrylpyridinium groups (PVA-SbQ) to prepare an amperometric biosensor for... [Pg.58]

J. Xu et al. [283] have shown that immobilization of enzymes can be done using a specially designed composite membrane with a porous hydrophobic layer and a hydrophilic ultrafiltration layer. A polytetrafluoroethylene (PTFE) membrane with micrometer pores as an excellent hydrophobic support for immobilization was employed for the porous hydrophobic layer, and a biocompatible material of polyvinyl alcohol (PVA) which provided a favourable environment to retain the lipase activity was used to prepare the hydrophilic... [Pg.168]

Widespread chlorine-containing polymers would include, 1) stable molding material for practical use such as polyvinyl chloride (PVC), polyvinylidene chloride and poly(epichlorohydrin)(PECH) and, 2) reactive polymers capable to introduce additional functional groups via their active chlorines such as chloromethyl polystyrene, poly (3-chloroethyl vinyl-ether) and poly (vinyl chloroacetate). While the latter, especially the chloromethyl polystyrene, has been widely used recently for the synthesis of variety of functional polymers, we should like to talk in this article about the chemical modification of the former, mainly of PVC and PECH, which was developed in our laboratory. [Pg.41]

Biologically Active Modification of Polyvinyl Alcohol The Reaction of Phenyl Isocyanate with Polyvinyl Alcohol... [Pg.83]

At present, there is one main commercial application of pervaporation, the production of high purity alcohol by a hybrid process which also incorporates distillation. Such separations use cellulose-acetate-based composite-membranes, with an active layer of polyvinyl alcohol, for example. Membrane fluxes are in the range 0.45-2.2 kg/m2 h. Pervaporation... [Pg.470]

The stabilizing of aqueous latexes succeeded by using emulsifiers (anionic, nonionic) and/or their mixture, steric stabilizators (polyvinyl alcohol (PVOH), hydroxyethyl cellulose, polyethylene glycol, new protective colloids etc.), and polymerizable surfaces active agents, in general. Vinyl acetate (VAc) emulsion homopolymers and copolymers (latexes) are widely used as binders in water-based interior and exterior architectural paints, coatings, and adhesives, since they have higher mechanical and water resistance properties than the homopolymers of both monomers [2, 4, 7]. [Pg.406]

Suspension polymerization. In this process, monomers and initiator are suspended as droplets in water or a similar medium. The droplets are maintained in suspension by agitation (active mixing). Sometimes a water-soluble polymer like methylcellulose or a finely divided clay is added to help stabilize or maintain the droplets. After formation, the polymer, is separated and dried. This route is used commercially for vinyl-type polymers such as polyvinyl chloride and polystyrene. [Pg.329]

Methylrheniumtrioxide (MTO) can straightforwardly be immobilized using copolymers consisting of polystyrene and polyvinyl pyridine. The authors proposed two possible structures 18 shown in Scheme 4.10. In the presence of H2O2 these catalysts are efficient and selective heterogeneous catalysts for the epoxidation of alkenes. It was shown that their activity is maintained for at least five recycling experiments [23 dj. In analogy to this work, bipyridyl-functionalized mesoporous silica can be employed for the immobilization of MTO [75]. [Pg.213]

The corresponding catalytic version of this reaction was performed using either naphthalene- or biphenyl-supported polymers 594 or 595, respectively, which were prepared by cross-coupling copolymerization of 2-vinylnaphthalene or 4-vinylbiphenyl with vinyl-benzene and divinylbenzene promoted by AIBN in THF and polyvinyl alcohoP . These polymers have been used as catalysts (10%) in lithiation reactions involving either chlorinated functionalized compounds or dichlorinated materials in THF at —78°C and were re-used up to ten times without loss of activity, which is comparable to the use of the corresponding soluble arenes. [Pg.741]

Oh S-Y, Kim H-W, Park J-M, Park H-S, Yoon C (2009) Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2-t, and zero-valent iron. J Hazard Mater 168 346-351... [Pg.171]


See other pages where Polyvinyl activity is mentioned: [Pg.475]    [Pg.482]    [Pg.138]    [Pg.290]    [Pg.222]    [Pg.222]    [Pg.170]    [Pg.118]    [Pg.54]    [Pg.103]    [Pg.174]    [Pg.130]    [Pg.54]    [Pg.606]    [Pg.1031]    [Pg.207]    [Pg.198]    [Pg.83]    [Pg.134]    [Pg.151]    [Pg.561]    [Pg.255]    [Pg.79]    [Pg.311]    [Pg.134]    [Pg.242]    [Pg.58]    [Pg.335]    [Pg.44]    [Pg.138]    [Pg.273]    [Pg.200]    [Pg.587]    [Pg.236]    [Pg.124]    [Pg.127]    [Pg.11]   
See also in sourсe #XX -- [ Pg.86 ]




SEARCH



Polyvinyl chloride activation energy

© 2024 chempedia.info