Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selective heterogeneous catalysts

Meth)acrylic acid and esters are large-volume industrial chemical intermediates for the production of co- and homopolymers. Acrylic acid (AA), with a worldwide production of approx. 1.5 X 10 t/a, finds its main use in the manufacture of superabsorbent polymers and various acrylate esters. The most important production process for AA involves the two-stage oxidation of propene (via acrolein) in the presence of a large excess of steam by heterogeneous catalysts. Selectivities to AA for the overall process reach 85-90% based on propene (cf. Chapter 1, Introduction). [Pg.316]

Homogeneous and heterogenous catalysts which selectively or partially hydrogenate fatty amines have been developed (50). Selective hydrogenation of cis and trans isomers, and partial hydrogenation of polyunsaturated moieties, such as linoleic and linolenic to oleic, is possible. [Pg.220]

The tert-huty hydroperoxide is then mixed with a catalyst solution to react with propylene. Some TBHP decomposes to TBA during this process step. The catalyst is typically an organometaHic that is soluble in the reaction mixture. The metal can be tungsten, vanadium, or molybdenum. Molybdenum complexes with naphthenates or carboxylates provide the best combination of selectivity and reactivity. Catalyst concentrations of 200—500 ppm in a solution of 55% TBHP and 45% TBA are typically used when water content is less than 0.5 wt %. The homogeneous metal catalyst must be removed from solution for disposal or recycle (137,157). Although heterogeneous catalysts can be employed, elution of some of the metal, particularly molybdenum, from the support surface occurs (158). References 159 and 160 discuss possible mechanisms for the catalytic epoxidation of olefins by hydroperoxides. [Pg.138]

EBHP is mixed with a catalyst solution and fed to a horizontal compartmentalized reactor where propylene is introduced into each compartment. The reactor operates at 95—130°C and 2500—4000 kPa (360—580 psi) for 1—2 h, and 5—7 mol propylene/1 mol EBHP are used for a 95—99% conversion of EBHP and a 92—96% selectivity to propylene oxide. The homogeneous catalyst is made from molybdenum, tungsten, or titanium and an organic acid, such as acetate, naphthenate, stearate, etc (170,173). Heterogeneous catalysts consist of titanium oxides on a siUca support (174—176). [Pg.140]

Many heterogeneous catalysts have been commercialized to dimerize ethylene to selectively yield 1-butene or 2-butene (66—70). Since ethylene is generally priced higher than butylenes, economics favor the production of butylenes from steam crackers, not from ethylene. An exceUent review on... [Pg.367]

Attenlion should be drawn to ihe use of tin oxide systems as heterogeneous catalysts. The oldest and mosi extensively patented systems are the mixed lin-vanadium oxide catalysis for the oxidation of aromatic compounds such as benzene, toluene, xylenes and naphthalene in the. synthesis of organic acids and acid anhydride.s. More recenily mixed lin-aniimony oxides have been applied lo the selective oxidaiion and ammoxidaiion of propylene to acrolein, acrylic acid and acrylonilrile. [Pg.385]

In comparison to heterogeneous catalyzed reactions, homogeneous catalysis offers several important advantages. The catalyst complex is usually well defined and can be rationally optimized by ligand modification. Every metal center can be active in the reaction. The reaction conditions are usually much milder (T usually < 200 °C), and selectivities are often much higher than with heterogeneous catalysts. [Pg.218]

It can be summarized from the available data in Table 3 that supported palladium catalysts selectively hydrogenated carbon-carbon double bonds in the presence of the nitrile group in NBR. However, there is no detailed fundamental study on heterogeneous catalytic hydrogenation of nitrile rubber in the literature that can provide an insight into the reaction. The available information is limited since most of the literature is patented. [Pg.559]

In the preceding section, it has been shown that considerable attention has been devoted to palladium as a heterogeneous catalyst. The present section describes the homogeneous palladium catalysts developed for hydrogenation of NBR. The main drive behind the development of various catalyst systems is to find suitable substituents of the Rh catalyst. Palladium complexes are much cheaper as compared with Rh and exhibit comparable activity and selectivity to Rh and Ru complexes. [Pg.564]

Trade et al. [56] used cationic bis(oxazoHne)-Cu(II) complexes, intercalated into lamellar clays by electrostatic interactions, as catalysts for C - C bond formation reactions. Interestingly, the heterogeneous catalysts led to higher conversions and selectivities than their homogeneous coimterparts. [Pg.111]

In Chapter 1 we emphasized that the properties of a heterogeneous catalyst surface are determined by its composition and structure on the atomic scale. Hence, from a fundamental point of view, the ultimate goal of catalyst characterization should be to examine the surface atom by atom under the reaction conditions under which the catalyst operates, i.e. in situ. However, a catalyst often consists of small particles of metal, oxide, or sulfide on a support material. Chemical promoters may have been added to the catalyst to optimize its activity and/or selectivity, and structural promoters may have been incorporated to improve the mechanical properties and stabilize the particles against sintering. As a result, a heterogeneous catalyst can be quite complex. Moreover, the state of the catalytic surface generally depends on the conditions under which it is used. [Pg.129]

Finally, a second area of research for nanoparticles is their immobihza-tion on various supports. The deposition of well-defined nanoparticles on a support by different methods should advantageously replace traditional heterogeneous catalysts in terms of activity and selectivity. [Pg.277]

Interfaces between two different media provide a place for conversion of energy and materials. Heterogeneous catalysts and photocatalysts act in vapor or liquid environments. Selective conversion and transport of materials occurs at membranes of biological tissues in water. Electron transport across solid/solid interfaces determines the efficiency of dye-sensitized solar cells or organic electroluminescence devices. There is hence an increasing need to apply molecular science to buried interfaces. [Pg.103]


See other pages where Selective heterogeneous catalysts is mentioned: [Pg.98]    [Pg.464]    [Pg.621]    [Pg.98]    [Pg.464]    [Pg.621]    [Pg.48]    [Pg.2789]    [Pg.77]    [Pg.242]    [Pg.489]    [Pg.259]    [Pg.342]    [Pg.224]    [Pg.44]    [Pg.1321]    [Pg.131]    [Pg.13]    [Pg.41]    [Pg.558]    [Pg.401]    [Pg.192]    [Pg.200]    [Pg.107]    [Pg.1003]    [Pg.89]    [Pg.157]    [Pg.1]    [Pg.1]    [Pg.59]    [Pg.185]    [Pg.329]    [Pg.29]    [Pg.100]    [Pg.264]    [Pg.341]    [Pg.6]    [Pg.274]    [Pg.276]    [Pg.299]    [Pg.167]   


SEARCH



Catalyst selection

Catalyst selectivity

Catalysts heterogeneity

Catalysts heterogeneous

Catalysts heterogenous

Heterogenized catalysts

Selective catalysts

© 2024 chempedia.info